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Parasites constitute an ideal system with which to investigate patterns and mechanisms of community structure and
dynamics. Nevertheless, despite their prevalence in natural systems, parasites have been examined less often than other
organisms traditionally used for testing hypotheses of community assembly. In the present study, we investigate possible
effects of competitive interactions on patterns of distribution (co-occurrence) and density among a group of streblid bat
flies parasitic on short-tailed fruit bats, Carollia perspicillata. Using null model analyses of species co-occurrence, we did
not find evidence that competition affects the distribution of bat fly species across hosts. Moreover, when non-infested
hosts were included, analyses showed evidence for interspecific aggregation, rather than for the segregation predicted by
competition theory. Partial Pearson correlations among bat fly species densities showed no evidence of negative
covariation in two of three cases. In the species pair for which a significant negative correlation was found, a visual
analysis of plotted covariation indicated a constraint line, suggesting that competition between these two species might
become operational only in some infracommunities when abundances of bat flies approach a maximum set by one or
more limiting resources. Moreover, when a community-wide estimation of the significance of density compensation was
calculated, the result was not significant. Overall, we find no evidence that competition influences the distribution of bat
flies on their hosts, and mixed support for effects of competition on the densities of species. These results are consistent
with the idea that competition plays a role in structuring natural communities, but in many systems its effects are context-
dependent and might not be important relative to other factors. Wider analyses across taxonomic and environmental
gradients and a detailed consideration of the different hypothesized effects of competition are necessary to fully
understand the importance of competition on natural communities.

Host�parasite systems offer a wealth of opportunity for
understanding variation in distribution and abundance of
organisms (Gotelli and Rohde 2002). Most research has
focused on documenting distribution and abundance of
parasites on hosts in an attempt to understand host�parasite
interactions. Nonetheless, the relative frequency of inter-
specific interactions among parasites, how these interactions
affect the structure of such communities, and how this may
ultimately influence host�parasite interactions remains
uncertain (Rohde 1991, Morand et al. 1999, Mouillot
et al. 2005).

The nature of host�parasite relationships structures
parasite communities at several hierarchical scales, ranging
from host clades and species to host individuals. Parasite
communities assembled at this last scale are termed infra-
communities (sensu Bush et al. 1997). The infracommunity
level is the most fundamental of these scales of analysis since
individual hosts represent the units of distribution at which
most local parasite interspecific interactions take place.

Parasite infracommunities make excellent model systems
for understanding organization of natural communities.

Hosts typically provide discontinuous habitat patches that
can support discrete communities of parasites (Gotelli and
Rohde 2002); this is in contrast to many terrestrial habitats
that often subtly intergrade, thereby making delimitation of
communities difficult. Additionally, abundant hosts pro-
vide ample and convenient replication with which to
conduct powerful statistical analyses to assess hypothesized
processes underlying community structure (Holmes and
Price 1986). Individual hosts can also vary considerably in
terms of morphology, condition, fitness and life history,
thereby providing natural treatment effects from which to
explore causative mechanisms.

Several mechanisms have been hypothesized to deter-
mine variation in community composition and species
abundance. Primary among these has been the classical
hypothesis of competitively induced deterministic structure.
According to this hypothesis, species in a particular
community comprise a nonrandom subset of species avail-
able from the regional pool, and possess characteristics that
minimize competitive interactions among them, thereby
allowing coexistence (Hutchinson 1957, MacArthur and
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Levins 1967). The interspecific competition hypothesis has
been recently challenged from at least two different
perspectives: neutral theory and non-equilibrium ecology.
The latter has been supported by some studies on parasite
communities (Rohde 1991, Morand et al. 2002, Mouillot
et al. 2003), suggesting that in these systems population
densities often remain low, resources are not limiting, and
consequently communities do not become saturated. There-
fore, neither resource-based competition nor zero-sum
dynamics are likely to be important (Rohde 2005).
However, other experimental and observational studies
have provided evidence that competition might be an
important force structuring parasite communities by caus-
ing competitive exclusion (mainly among snail parasites,
Kuris and Lafferty 1994) or by increasing differentiation of
microhabitat use within the host (mainly on platyhelmith
worms, Bush and Holmes 1986). Studies on parasite
community structure, particularly those addressing the
effects of competition on composition and species abun-
dance, have focused on a relatively limited set of parasitic
taxa. Given the vast diversity of host�parasite systems, the
generality of competitive interactions on parasite commu-
nities remains unclear.

Ectoparasitic relationships between bat flies and their
chiropteran hosts provide an interesting and useful setting
from which to better understand variation in community
structure, as well as the mechanistic bases to such structure.
Bat flies (Diptera: Streblidae) are obligate blood-feeding
ectoparasites exclusively associated with bats (Dick and
Patterson 2006). Streblid bat flies exhibit high host
specificity (Dick 2007, Dick and Patterson 2007), suggest-
ing tight co-evolution between hosts and parasites in this
system. Bat hosts are often abundant, especially in the
tropics, and easy to sample (Rui and Graciolli 2005). In
particular, the host species of this study, Carollia perspi-
cillata, is widely distributed in South and Central America
and is considered one of the most abundant species in the
Neotropics (Cloutier and Thomas 1992). On a particular
host, bat flies can be numerous and are readily identifiable
(Dick and Gettinger 2005). Hosts are often parasitized by
multiple fly species; in a survey in Venezuela, 63% of
infested bats hosted simultaneously 2�4 fly species (Wenzel
1976). Moreover, all bat flies consume a common resource
(blood) and live in relatively small patches of habitat
(hosts). How these ectosymbionts co-exist, given seemingly
limiting resources, remains a question.

In the present study, we test the hypothesis that inter-
specific competition is a major force structuring infracom-
munities of streblid flies that parasitize C. perspicillata. We
analyze the distribution and densities of these parasite
species to evaluate two predicted effects of competition on
the structure of natural communities. If competition is an
important force, it is expected that 1) competitors will be
distributed across communities in a way that avoids, or at
least reduces, their common occurrence (competitive
exclusion, less-than-expected patterns of species co-occur-
rence), or that 2) in communities where competitors co-
exist, abundance of one species will be inversely related to
the abundance of others (density compensation, negative
correlations among the abundances of competing species).

Methods

Data collection

Individuals of Carollia perspicillata and their bat fly
ectoparasites were collected from several lowland and
mountainside localities on both sides of the Andes in
Ecuador. Bat sampling at a particular site typically consisted
of six mist-nets set at ground level within an area B1 km2

for up to five consecutive nights. When a C. perspicillata
was captured, it was immediately euthanized, removed from
the net and placed into a sealed zip-lock plastic bag. At the
field laboratory, each bat and bag were carefully examined
for streblids and other ectoparasites. This protocol mini-
mized parasite escape and inter-host contamination, allow-
ing for more accurate estimation of the proportion of hosts
infested (prevalence) and streblid individuals per parasitized
host (intensity).

Bat flies were identified, individuals were quantified and
a value of abundance (sensu Bush et al. 1997) was assigned
for each streblid species on each bat host examined. All bat
and bat fly specimens collected were deposited in the
scientific collections of the Museo de Zoologı́a of the
Pontificia Univ. Católica del Ecuador (QCAZ).

Data analysis

Sampling was conducted at 18 localities. However, because
the purpose of our study was to examine patterns of fly co-
occurrence and abundance under the hypothesis of compe-
titive interactions at the infracommunity level (on host
individuals), we reduced the dataset to only those hosts
collected at geographic localities from which all three
streblid species under study were recorded. By doing this,
we intended to reduce or eliminate the effect of mechanisms
acting at scales larger than the infracommunity, such as
forces shaping geographic distribution or locality occupancy
of the bat fly species. We acknowledge that one of these
forces could be competition, and that competitive interac-
tions could have different effects at other scales of analyses
(e.g. at the level of geographic locality or even region),
which we are not addressing in this paper. The restriction of
localities to those containing all bat fly species analyzed, and
the fact that sampling at each locality was homogeneous in
time and space, maximized the probability that every host
could be colonized by every bat fly species. This process of
data filtering yielded information on the occurrence of 376
streblids on 92 hosts collected at seven localities; four
of these localities were located west and three east of
the Andes. The mean linear distance between localities was
230 km.

Null model analyses of co-occurrence
Given that resources are limiting, a superior competitor
could drive other competitors locally extinct (competitive
exclusion, Gause 1934). Competitively induced local
extinction distributed across a landscape or a series of
habitat patches would create a checker-board occupancy
pattern among competitors. Thus, competition theory
predicts less-than-expected patterns of species co-occurrence
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(Diamond 1975). To test this prediction, null-models of
species co-occurrence were carried out.

Null models are statistical tools based on the randomiza-
tion of empirical or theoretical data that allow comparison
between observed patterns and those expected under a
particular null hypothesis (Gotelli and Graves 1996). In the
case of null models of species co-occurrence, analyses are
often based on a presence�absence matrix. Columns
represent the units at which occurrences are measured
(e.g. geographic localities, host individuals) and rows
correspond to species. Each entry can be either 1 (presence),
or 0 (absence). From this empirical matrix, a single co-
occurrence index is extracted, representing the degree of
common occurrences of species throughout the commu-
nities. Then, 1s and 0s are reshuffled in the matrix with
each occurrence being relocated independently of any other,
but according to the constraints of a particular randomiza-
tion algorithm. After a new random matrix has been
created, the co-occurrence index is recalculated. This
process is repeated a number of times, yielding a distribu-
tion of the index under the null hypothesis of independence
among occurrences. The empirical index can then be
compared to the randomly generated distribution and a
value of its probability of outcome by chance can be
obtained.

Delimitation of the empirical matrix is critical (Gotelli
and Graves 1996). Thus, matrices must be logically
structured and justified; but at the same time, they provide
a flexible means to modify the scenario in which hypotheses
are tested and to further explore data. The decision to
include or exclude empty sites is one that can have
substantive effects on the outcome of randomization
analyses. Some decisions are obvious, such as the exclusion
of sites that fall outside of the dispersal capabilities of focal
taxa (Reddingius 1983). By limiting our samples to
geographic locations where all species of ectoparasites
were known to occur, we eliminated hosts that were
unsuitable in terms of isolation. Non-parasitized hosts
within the dispersal range of focal taxa present a quite
different scenario. Hosts could be empty because they are
not suitable habitats for ectoparasites, because by chance
they have not been colonized (stochasticity of assembly)
(Gotelli and Rohde 2002), or because they represent spatial
dynamics of parasite populations. Because of these diffe-
rent interpretations, we analyzed our data including and
excluding non-parasitized bats. We agree with Gotelli
and Rohde (2002) that complementary analyses with and
without empty sites can provide important insights into the
assembly of communities.

After our data were constrained to geographic localities
where all bat fly species were recorded, the remaining data
were used to build two matrices. The first consisted of 92
columns, representing the total 92 hosts for which data on
streblid infracommunity structure were gathered. The
second matrix was the portion of the first that remained
after removing all hosts that did not harbor any bat fly
species; this process yielded a matrix with 75 columns.

Several indices have been proposed to quantify patterns
of species co-occurrences, but not all are equally suitable for
a particular dataset. In this study, the C-score was used.
This index has the advantage that it does not require species
to have perfect mutually exclusive distributions (Gotelli

2000), so it can be used in ‘‘noisy’’ datasets, where species
tend to competitively exclude each other, but still co-exist in
certain communities. Gotelli (2000) showed that this
‘‘noise’’, caused by imperfect divergent distributions of
species, can reach high values (around 50%) with C-scores
being still sufficiently powerful to detect less-than-expected
co-occurrences. Additionally, when coupled with appro-
priate algorithms, it generates null models with good
statistical behavior (Gotelli 2000). High values of this
index indicate that the overall pattern is infrequent co-
occurrence of species, while low C-score values mean that
species frequently occur together.

The final step in null model analyses of species co-
occurrence is to select suitable randomization algorithms.
Algorithms define constraints imposed on the process by
which random matrices are generated. Gotelli (2000)
demonstrated that algorithms maintaining the empirical
number of occurrences per species in the reshuffled matrices
(fixed row algorithms) generally have good type I error
properties (average false null hypothesis rejection B15%;
Gotelli 2000). Thus, the null models used in this study were
based on four fixed-row algorithms, but with the following
constraints imposed on the host (column) totals:

1. Fixed rows, equiprobable columns. All hosts have the
same probability of obtaining a parasite species during
the randomization process.

2. Fixed rows, column probabilities given by host body
weight. Considerable variation in host weight was
observed (14.9�29.8 g). Host weight may be used as a
surrogate for resource availability and habitat patch
size, which may in turn influence parasite species
richness per bat. Also, if body size is indicative of host
age, it can be associated to species richness by parasite
accumulation (Pulkkinen and Valtonen 1999). These
potential effects were controlled using this algorithm,
whereby probability of obtaining a parasite species is
proportional to the host’s body weight.

3. Fixed rows, fixed columns. The total number of
species observed on each host is also maintained, and
only their identity is randomized.

4. Fixed rows, proportional columns. The probability of
a host acquiring a parasite species is proportional, but
not constrained to be identical, to the number of
parasite species found on that host in the empirical
matrix.

The fixed-equiprobable algorithm differs from the others in
that it considers all hosts to be strictly homogeneous in the
likelihood of being colonized and the number of parasite
species they can sustain. The other algorithms account for
host-to-host variation that could influence their suitability
for parasite colonization or coexistence. This host-to-host
heterogeneity can be known (body mass) or unknown, but
assumed to be reflected in the number of parasite species
observed in the empirical data (in the case of fixed-fixed and
fixed-proportional algorithms). Results stemming from the
different null model algorithms can indicate the degree that
host-to-host heterogeneity influences patterns of parasite
co-occurrence.

Only algorithms 1 and 2 were used in analyses that
included empty hosts because when occurrences are
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reshuffled under constraints of fixed or proportional
columns (algorithms 3 and 4), the probability that an
empirical empty host will receive a parasite species in any of
the null matrices equals zero. On the other hand, all four
algorithms were used in the scenario that excluded non-
infested hosts. All null models were based on 10 000
iterations and degenerate matrices were retained in all cases.
Analyses were carried out using Ecosim 7.72 (Gotelli and
Entsminger 2001).

Kuris and Lafferty (1994) have criticized the use of
observed values of occupancy to parameterize co-occurrence
null models. They argue that if competition causes
exclusion, then the empirical values of parasite occupancy
are themselves already affected by competition. Conse-
quently, their use could lead to detection of false random
distributions, hiding real less-than-expected patterns of co-
occurrence. This issue has the potential to influence our
results since all algorithms constrained the null matrices to
match the observed number of occurrences per species
(fixed row algorithms). To address this concern, we re-
analyzed our data following a solution advocated by Kuris
and Lafferty (1994). Accordingly, occupancy values for
model parameterization must be calculated for each species
using only the fraction of the host sample that does not also
contain a superior competitor. Although it is not possible to
a priori define superior�inferior competitor hierarchies
among our parasite species, we calculated values of
occupancy for each bat fly species using only those hosts
that did not simultaneously harbor another parasite species.
We then used the highest prevalence value for each bat fly
species to parameterize our algorithms, and the null models
were re-run. These results showed no more indication of
competitive exclusion than the original results, suggesting
that our analyses are not biased. Thus, we present results
only from the fixed row algorithms.

Pooling hosts from all localities into a single analysis may
obscure effects of spatial heterogeneity among geographic
localities, thereby confounding our results. This possibility
was suggested also by Kuris and Lafferty (1994) in their
study of larval trematode infracommunities. To account for
the effects of pooling sites, we re-analyzed our data by
locality and interpreted the overall trends by using a meta-
analysis. The results and conclusions from these analyses
(Supplementary material: Appendix 1) match closely those
obtained from pooled data analyses, for which we develop
below.

Bi-variate correlations of species densities
Competitive exclusion, and the resulting less-than-expected
co-occurrence pattern, is a fundamental prediction made by
competition theory. However, species may also respond to
competition in other ways. For example, there can be
changes in abundance of a species depending on presence or
abundance of competitors, observed primarily as negative
density covariation (Houlahan et al. 2007); this response is
termed density compensation (Stevens and Willig 2000).
The observation of density compensation in natural systems
suggests that competition for a common limiting resource is
determining abundances of species within the community.
Thus, although co-occurrence patterns may themselves not

point to competition, patterns of abundance may still be
indicative of competitive interactions.

Other factors, such as spatial heterogeneity of environ-
mental variables, could also influence species abundances
and create spurious correlations. Thus, when testing for
density compensation we controlled for environmental
heterogeneity by using partial Pearson correlations in which
variation in locality elevation, host body weight and host sex
(categorical dummy variable) was accounted for. Density
correlations were performed for each species pair using only
those hosts that harbored one, the other, or both species
whose densities were being considered (i.e. double-zero
records were eliminated from all pair-wise correlations).
Since we were exclusively interested in possible negative
correlations, we used one-tailed probability values. All
possible pair-wise combinations of species yielded three
different correlation analyses, and sequential Bonferroni
corrections (Rice 1989) maintained alpha at 5%.

To obtain a community-wide estimation of the im-
portance of density compensation in our study system, we
used Fisher’s method to combine the probabilities of all
three independent correlations in a meta-analysis (Sokal and
Rolf 1995). This method consists of summing the natural
logarithms of the one-tail probabilities for each correlation,
multiplying it by minus two, and comparing this value to a
x2-distribution with 2k degrees of freedom (where k is the
number of individual tests; Sokal and Rolf 1995).

Results

Four streblid bat fly species were recovered from Carollia
perspicillata: Trichobius joblingi (Fig. 1A), Strebla guajiro
(Fig. 1B), Speiseria ambigua (Fig. 1C) and S. peytonae. S.
peytonae was rare, represented by only two individuals in the
total sample (B0.5% of the total number of bat flies
captured). Also, this streblid species is known to be
primarily associated with a different, but closely related,
host species: C. brevicauda (Wenzel 1976). Because of this
extremely low occurrence and the possibility that these
records represent sampling contamination (Dick 2007), S.
peytonae was omitted from all analyses. Trichobius joblingi
was the most common species (prevalence�0.7, mean
abundance�3.11), followed by Strebla guajiro (pre-
valence�0.35, mean abundance�0.50) and Speiseria
ambigua (prevalence�0.27, mean abundance�0.48).

All null model algorithms exhibited qualitatively similar
results, indicating that host heterogeneity in body size and
parasite species richness do not play important roles in
determining co-occurrence patterns. Nevertheless, differ-
ences were observed between scenarios that excluded and
included empty hosts. The analyses excluding non-infested
hosts showed that the observed co-occurrence pattern could
be expected by simple random assembly (Fig. 2). However,
the two null models that included empty hosts showed a
strong positive non-random pattern of species co-occur-
rence (Fig. 3), indicating that species co-occur more often
than expected by chance (Supplementary material: Appen-
dix 1).

Of the three pair-wise correlations between species
densities, two showed no significant relationships (Fig.
4A�B). In contrast, Speiseria ambigua and Strebla guajiro
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exhibited a significant negative correlation (Fig. 4C).
However, the pattern of density variation in these two
species does not simply fall around a negative tendency line,
but indicates a constraint. This constraint is graphically
observed as the triangular shape of the distribution of
variation and the absence of points in the upper right corner
of the bi-variate plot (Fig. 4C). Finally, after combining
probabilities from all three correlations, the overall sig-
nificance of negative covariations among bat fly species was
not statistically significant (x2�10.15, DF�6, p�0.118).

Discussion

The role of interspecific interactions in shaping patterns of
distribution, assembly and abundance of species has been
broadly investigated and remains a focus of ongoing debate.
Much work has been conducted on free-living organisms,
with less attention given to patterns of organization of
parasite communities and the mechanistic bases for their
structure. In the present study, we investigated the role of
interspecific competition in structuring simple bat ectopar-
asite assemblages by testing two of its expected outcomes:
competitive exclusion and density compensation.

Bat fly abundances and density compensation

Several studies that have investigated interspecific interac-
tions through analysis of density correlation in parasites
have reported both negative (Komeno and Linhares 1999,
Alves and Luque 2001) and positive (Luque et al. 2003)
relationships. However, lack of association also seems to be
common (Dean and Ricklefs 1979, Haukisalmi and
Henttonen 1993, Behnke et al. 2005). In our examination
of density compensation, Fisher’s test for combining
probabilities indicated overall non-significant negative
covariation, suggesting that competition may be relatively
unimportant in determining community-wide abundance

patterns of these species. Nevertheless, one species pair
(Strebla guajiro and Speiseria ambigua) exhibited evidence of
density compensation, as expected by the effects of negative
interspecific interactions. Species of the genera Strebla and
Speiseria have been reported to share similar microhabitat
preferences for furred body surfaces, while species in the
genus Trichobius tend to be located more often on
interfemoral and wing membranes (ter Hofstede et al.
2004). These microhabitat preferences could set the stage
for the observed stronger interactions between Strebla
guajiro and Speiseria ambigua.

Interestingly, visual inspection of the density covariation
between these two species (Fig. 4C) reveals that points do
not simply fall around a line of negative slope, but occur
within an apparent upper constraint. It seems that when
density of one species is low, density of the other species is
free to vary from zero to high abundance; but, when density
of one species is high, density of the other is constrained to
be low. This observation suggests that there are some
instances in which species densities become so high that one
or more resources turn into limiting factors and competi-
tion becomes operational, setting a maximum to the
number of individuals and species that can co-exist given
the available resources. However, much variation in species
abundances can occur below this constraint, and this
variation may be attributable to other causes, such as
dispersal limitation, disturbance or chance. In some situa-
tions, mechanisms that prevent infracommunities from
becoming saturated may operate so frequently that species
never become abundant enough as to reach carrying
capacity and thus exhaust resources; in such cases, these
constraints and competitive effects may never become
apparent (Rohde 2005).

Parasite species distributions on host populations

Research on other groups of parasitic animals indicates
that negative, random, or positive associations in the

Fig. 1. Relative body size and morphology of the three bat fly species that commonly co-occur on C. perspicillata: (A) Trichobius joblingi,
(B) Strebla guajiro and (C) Speiseria ambigua.
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distribution of coexisting species are all possible. Much
evidence for competitive exclusion among parasites comes
from studies on larval trematodes on snail hosts (Kuris and
Lafferty 1994). However, a diverse set of study systems
shows random occurrence or interspecific aggregation,
thereby bringing into question the importance of competi-
tion in determining the assembly of parasites communities
(e.g. helminths in voles, Haukisalmi and Henttonen 1993;
Copepoda, Monogenea, Monopisthocotylea, Trematoda,
Cestoda, Isopoda and Branchiura on marine fish, Gotelli
and Rohde 2002; nematodes, cestodes and trematodes in
antelopes, Fellis et al. 2003; nematodes, cestodes and

digeneans on mice, Behnke et al. 2005; fleas on rodents,
Krasnov et al. 2006).

Our results support this line of evidence. When all hosts
were incorporated into the analyses, the results indicate that
bat fly species are aggregated: they occur together more
often than expected. This pattern is the opposite of that
predicted by competition; thus, it represents clear evidence
against the idea that negative interspecific interactions drive
the pattern of distribution of parasite species across host
populations in our study system. However, such aggrega-
tion can be caused by forces (below) that do not necessarily
involve positive species interactions. Consequently, there is
still the possibility that competition is important at a
smaller scale of analyses, namely when only the part of the
distribution that represents reachable and suitable habitat is
considered (parasitized hosts). In fact, it has been suggested
that parasite aggregation could enhance conditions for
interspecific competition on the parasitized part of the
host population (Poulin 1998). Contrary to this idea, our
results show that when empty hosts were excluded from the
co-occurrence analyses, the emerging pattern was of random
assembly. Such a result is inconsistent with the competition
hypothesis, and strongly suggests that negative interspecific
interactions are not the main force affecting the distribution
of parasites across habitat patches (hosts) in our study
system. It also suggests that other forces may limit the
distribution of all species in a similar way, thereby causing
interspecific aggregation within host populations; but, this
mechanism(s) may not operate (or be strong enough) to
also generate aggregation within the part of the host
population that is parasitized.

When empty hosts were included in analyses, the fixed-
equiprobable and the fixed-body weight algorithms did not
provide different results. This suggests that host differences

Fig. 2. Results of null model analyses based on the matrix
excluding empty hosts. The figure shows the position of the
empirical C-score (arrow) in a frequency distribution of values
generated randomly based on four different algorithms: (A) fixed
rows�fixed columns, (B) fixed rows�proportional columns, (C)
fixed rows�equiprobable columns, and (D) fixed rows�column
probabilities given by host body weight. Note that box (A) does
not share the scaling in the abscissa with (B), (C) and (D).

Fig. 3. Results of null model analyses based on the matrix
including empty hosts. The figure shows the position of the
empirical C-score (arrow) in a frequency distribution of values
generated randomly based on two different algorithms: (A) fixed
rows�equiprobable columns and (B) fixed rows�column probabil-
ities given by host body weight.
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in body mass do not explain the observed aggregation. This
is further supported by a lack of correlation between host
body weight and total parasite abundance, or parasite
species richness in our system (r��0.044, p�0.706
and r��0.001, p�0.992 respectively; unpubl.). Simi-
larly, within the part of the host population that is
parasitized, the similarity among results from the null
model algorithms suggests that the lack of structure is not
associated with host-to-host heterogeneity in body mass or
probability of colonization.

Mechanisms contributing to aggregation
The observed frequent co-occurrence when all hosts were
considered can result from positive species interaction, host-
to-host (patch) heterogeneity in rates of dispersal and
extinction, variability in host suitability for bat fly coloniza-
tion or survival, or other evolutionary or ecological
processes shaping distribution of the parasite species in
similar ways. First, positive indirect interaction among
parasite species have been suggested in which the presence
of a parasite species may reduce the effort of the host to
avoid or eliminate individuals from other species. Facilita-
tion of this nature would increase the chance for local
coexistence of various parasite species (Krasnov et al. 2005).
This mechanism can be considered analogous to predator-
mediated positive interactions (e.g. due to predator switch-
ing) proposed to explain the coexistence of prey species in
free-ranging organisms (Holt and Lawton 1994), where the
presence of a prey species enhances existence of another by
reducing the net predatory effect. Predator-mediated coex-
istence can be reached only if the effect of the predator is
dependent on its own density, but its density is limited by
other mechanisms besides prey exhaustion (Abrams and
Matsuda 1996). In the case of parasite infracommunities,
intensity of host anti-parasitic response (e.g. intensity of
grooming behavior or immunological reaction, which is
analogous to predator density) must reach a limit set
primarily by constraints on the amount of energy or time
that can be invested in parasite avoidance or removal
(Giorgi et al. 2001, Krasnov et al. 2005). In this way, the
anti-parasitic response would increase relative to the
number of parasites, until the threshold set by energetic
constrains is reached. Individuals or species numbers
beyond this point would be facilitated by a dilution of
the anti-parasitic host effects.

Another possible explanation for interspecific aggrega-
tion may relate to environmental and/or host characteristics
needed by parasites to survive. This explanation requires
that all parasite species have similar habitat preferences.
This resemblance could be the case if there is a high degree
of conservatism in the evolution of niche characteristics
among species (Weins and Graham 2005). However, the
three bat fly species belong to different genera, which
present substantial morphological differentiation (Fig. 1).
In turn, this phenotypic dissimilarity is a sign of niche
evolution, divergence in niche characteristics and possibly
also a lack of correspondence in host preference among bat
fly species. On the other hand, this apparent morphological
segregation could also suggest within-host microhabitat
specialization. Microhabitat partitioning has been found in
many other parasite systems (especially among Platyhel-

minthes; Bush and Holmes 1986, Cilso and Caira 1993),
and could be an important way in which parasite species
share resources (Combes 2001), allowing their coexistence,
or even allowing their aggregation (but see Rohde 1994 for
an interpretation of parasite niche specialization unrelated
to competition).

The observed aggregation could also be related to
dispersal limitation. The role and importance of dispersal
in patterns of community assembly and species abundance
has been studied and is now well supported (Leibold et al.
2004). Since movement of individuals is strongly depen-
dent on the spatial relationships among sites, dispersal could
be especially important for parasites because their habitat
patches (hosts) are often not spatially static, but move and
change in position relative to each other. Thus, depending
on the host’s spatial interactions (e.g. movement and
grouping associated with social behavior), there can be
heterogeneous rates of dispersal among them. Conse-
quently, parasites may aggregate on those hosts with the
highest probabilities of transmission. This is supported by
the observation that hosts with higher chances of physical
encounter also have elevated rates of infestation (Arneberg
et al. 1998, Patterson et al. 2007). Particularly, in Carollia
perspicillata, sex-biased rates of contact among hosts can
help explain the observed aggregation. The host species has
a polygynous mating system, where females form harems
controlled by one dominant male; single males can form
bachelor groups, but these are usually smaller and less stable
(Cloutier and Thomas 1992). Consequently, female hosts
would tend to accumulate more parasites. This possible
explanation is supported by evidence suggesting that female
C. perspicillata have higher loads of parasitism by bat flies
(Fritz 1983, Tello and Jarrı́n unpubl.), which seems not to
be the result of a sex biased choice by the parasites (Dick
and Dick 2006).

Finally, disturbance is also an important force shaping
community structure (Sousa 1984). Parasite infracommu-
nities are likely subjected to near-continuous episodes of
disturbance, because in most cases their habitat patches
(hosts) are actively trying to get rid of them. Common
manifestations of disturbance in parasite infracommunities
can be host grooming behavior and host immunological
responses, which remove individuals from the system. Local
extinction caused by the host could also exacerbate the
effects of dispersal limitation; if species are removed from a
site, and there is a long lapse of time before dispersal
restores the species to that site, then species will tend to
aggregate on the sites where local extinction due to
disturbance is low or where re-colonization by dispersal is
high. In vertebrates, heterogeneous rates of grooming and
immunocompetence can result from social behavior, sex,
body size, age, etc. (Hart et al. 1992, Mooring et al. 1996,
Roulin et al. 2003).

Concluding comments

Overall, we find no evidence of competition in patterns of
distribution and mixed effects on the patterns of covariation
in density among bat fly species. These results support the
idea that, although there might be a signature in co-
occurrence patterns of free-ranging species that is consistent
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with competition theory (Gotelli and MacCabe 2002, but
see Ulrich 2004), it is often the case among parasites that
limiting resources are not an important force shaping the
assembly of their communities (Rohde 1991, 2005,
Morand et al. 2002, Fellis et al. 2003, Krasnov et al.
2005). On the other hand, our density compensation

analyses suggest that competition is present but not
prevalent, being restricted to one pair of species. Moreover,
the effects of competition might be important when
abundances of these species are high; but when a competitor
is rare, the other species does not necessarily respond by
increasing in abundance. It is possible that in such low
abundance situations other factors become more important
determinants of species abundance. This is also consistent
with research on parasitic and free-ranging organisms that
shows that competition interacts with others mechanisms
and is context dependent, being important in some
situations but unimportant in others (Combes 2001,
Houlahan et al. 2007, Kaplan and Denno 2007).

Recent research on parasite community ecology has
provided important insights into how parasite assemblages
are structured and how they might differ from more
traditional model organisms, but clear general trends have
not emerged. These studies have also indicated that it is
necessary to investigate how different hypothesized mechan-
isms shape communities in a wider array of systems in order
to evaluate their effects across taxonomic and environmental
gradients. For example, some evidence suggests that the
strength with which competition might shape patterns of
co-occurrence and abundance could vary depending on
characteristics of the taxon being analyzed (e.g. poiki-
lotherms vs homeotherms, Gotelli and MacCabe 2002, or
core vs satellite species, Ulrich and Zalewski 2006). These
differences in species and environmental characteristics
might create communities that form a continuum ranging
from random to deterministically structured (Rohde 2005,
Fig. 11.1).

It is also important to understand and evaluate the
multiplicity of effects that competition can have on natural
systems. In this study, we have addressed the effects of
negative species interactions based on limiting resources on
the co-occurrence and covariation in abundance of species,
but other predictions from competition theory should also
be tested. Competition can also be related to microhabitat
specialization (Reed et al. 2000, Friggens and Brown 2005)
or patterns of morphology (e.g. morphological overdisper-
sion, Stevens and Willig 1999, or character displacement,
Dayan and Simberloff 2005). Habitat specialization has
been suggested among co-existing bat flies (ter Hofstede
et al. 2004) and phenotypic differences are also readily
apparent (Fig. 1). These potential differences in niche
utilization could be the reason for the lack of a stronger
competition signal in the distribution and abundance of bat
fly species in our study system. Evaluation of how our
results match those of other bat fly species on different
hosts, locations and scales, and how this possible micro-
habitat partitioning and morphological dissimilarities
among co-occurring bat flies fit predictions made by the
interspecific competition hypothesis or other possible
mechanisms of community assembly remains to be inves-
tigated.
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Appendix 1. Null model analysis of
species co-occurrence by geographic
locality
Pooling localities in our null model analyses could have biased our
results by eliminating possible effects of spatial heterogeneity in
the observed levels of co-occurrence. This has the potential to hide
patterns of aggregation or segregation, which might be found if the
analyses were run at the geographic locality level. To assess this
possibility, we ran our null model analyses independently for each
locality, and interpreted the results using a meta-analysis.

Methods
For each locality, we ran the same null model analyses as we did for
the pooled data: we used four different null model algorithms and
analyses were carried out in two scenarios: including or excluding
non-infested hosts. However, we could not run all possible null
models in all localities. One of the localities incorporated in the
pooled analyses was excluded from the single locality analyses be-
cause it had only three hosts; in all other localities at least nine
hosts were captured, and consequently had enough individuals to
run the null models. In two localities 100% of the bats were para-
sitized, consequently null models including empty host could not
be run. Also, the number of individuals was so small in two local-
ities that the fixed-fixed algorithm could not randomize the ob-
served matrix (this is caused because this algorithm sets many con-
straints on how the observations must be reshuffled). In the end,
we were able to run a total of 29 analyses by combinations of the
scenario in which the algorithms were carried out (excluding or
including empty hosts), the null model algorithm (fixed-
equiprobable, fixed-fixed, fixed-proportional and fixed- by host
body weight), and the locality (six localities).

From each of the previously described analyses, we were able to
calculate one-tailed probabilities for aggregation (p[Cobs≤Cexp])
and for segregation (p[Cobs≥Cexp]), as well as a measure of standard-
ized effect size

SES=(Cobs–Cexp)/Ssim

as used by Gotelli and Rhode 2002, where Cobs is the C-score cal-
culated from the empirical matrix, Cexp is the mean C-score from
the simulated matrices and Ssim is the standard deviation of the null
distribution.

Exploring the effect of number of individuals on null
model analysis results

All null models used a total of 10 000 randomizations. However,
the number of individuals that are included in each randomization

process could influence the results produced by the null models
and the power of the tests. To understand these effects, we con-
ducted linear regressions of the number of individuals included in
the randomization (n) on: 1) the standard deviation of the rand-
omized distribution, 2) the standardized effect size, 3) and 4) both
one tail probability values. To control for non-independence of the
observations, we modified the number of degrees of freedom in
the denominator for the F-tests to be equal to the number of local-
ities; this implied a reduction from 27 to 6 degrees of freedom. It is
difficult to determine exact degrees of freedom for the 29 points
used in the regressions; however, we think that this reduction is
sufficient for the purpose of controlling for most non-independ-
ence.

Testing standardized effect sizes against the zero null
hypothesis

To test whether the observed levels of co-occurrence differed sig-
nificantly from random assembly, we compared the standardized
effect size against the null hypothesis of no difference from zero.
We did this by using a one-sample t-test for each combination of
algorithm and scenario, and also for each algorithm irrespective of
the scenario, and for each scenario irrespective of the algorithm
used.

Testing for differences among algorithms and
scenarios

To test if there are any trends or differences among the algorithms
or between the scenarios in which the null models were ran, we
conducted three independent General linear models using as de-
pendent variables: 1) the standardized effect size, 2) the probability
of aggregation, and 3) the probability of segregation. In these anal-
yses, algorithms and scenarios were included as independent varia-
bles, while locality was included as a random factor.

Results
In Fig. A1, we observe that the number of individuals had a signif-
icant impact on the null model outcomes. A greater number of
individuals increases the possibility of more configurations for the
randomized matrices, and consequently increases the variability in
the null distribution (Fig. A1a). Similarly, the number of individu-
als has a significant association with the SES and the probability
values (Fig. A1b–d). Increases in the number of individuals also
increase the power of the null model analysis (Fig. A1c–d), by in-
creasing the SES (Fig. A1b).

Table A1 shows the results from the null model analyses run
independently per locality, algorithm and scenario. Most single
null model analyses did not show a pattern that could be distin-
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guished from random assembly. As suggested by the previous cor-
relation analyses, this could result from a lack of statistical power.
However, if we look at the locality that had the largest number of
individuals (locality 3), we can see that all null model algorithms
that excluded empty hosts were clearly not statistically significant,
while the null models that included empty hosts show evidence of
interspecific aggregation, being the only statistically significant re-
sults at an alpha of 0.05. The results at this locality, where presum-
ably we have enough statistical power, showed perfect concord-
ance with the analyses that pooled all individuals together. On the
other hand, at locality 5, three of the four null models that exclude
empty hosts show marginally significant support for the idea of
segregation.

Figure A2 and Table A2 show the results from the one-sample t-
test of the standardized effect sizes with respect to the null expecta-
tion of zero. Only one of the groups seems to be different from
zero: in the case of the null models that included empty hosts (irre-
spectively of the null model algorithm), the one-sample t-test
showed marginally significant results.

Finally, the results of the General linear models can be found in
Table A3 and Fig. A2 and A3. In general, the analyses that include
and exclude empty hosts seem to provide significantly different
results, suggesting that when empty hosts are included, the levels
of co-occurrence are suggestive of patterns of aggregation, and
when these hosts are not used in the analyses, the patterns seem to
be mostly random. This is supported by the statistical analyses

which show that the categories of scenario are significantly differ-
ent for all three dependent variables. There also seems to be signif-
icant variation in the results among the null model algorithms and
localities, indicated by the significance of the algorithm term and
the interaction terms with locality. However, some of the observed
interactions with locality can result from differences in the statisti-
cal power across sites which will show significant results in some,
while no statistical support in others.

Conclusions
Overall, these results show support for our pooled-sites null model
analyses. When the null models are run separately for each locality,
there is little evidence of segregation patterns hidden in the analy-
ses in which we pooled together hosts across localities. Moreover,
when we conduct meta-analyses on the single locality results, they
point to the same conclusions obtained from the pooled data in
that there is a clear difference between the results of the null mod-
els when empty hosts are included versus when empty hosts are
excluded. It seems that when we consider the entire host popula-
tion, these parasites are markedly aggregated; conversely, the para-
sites seem to be distributed randomly in the part of the population
that is infested. This suggests that competition is not a strong force
shaping the distribution and infracommunity assembly of these
parasite species.



3

Ta
bl

e 
A

1.
 R

es
ul

ts
 fr

om
 th

e 
sin

gl
e-

lo
ca

lit
y 

nu
ll 

m
od

el
 a

na
ly

se
s. 

F o
r e

ac
h 

co
m

bi
na

tio
n 

of
 L

oc
al

ity
, S

ce
na

ri
o 

an
d 

A
lg

or
ith

m
, f

or
 w

hi
ch

 w
e 

ra
n 

nu
ll 

m
od

el
 a

na
ly

se
s o

f c
o-

oc
cu

rr
en

ce
, w

e 
re

po
rt

 th
e

to
ta

l n
um

be
r o

f i
nd

iv
id

ua
ls 

us
ed

 in
 th

e 
ra

nd
om

iz
at

io
n 

(n
), 

th
e 

ob
se

r v
ed

 C
-s

co
re

 (C
ob

s),
 th

e 
ex

pe
ct

ed
 C

-s
co

re
 (C

ex
p, 

w
hi

ch
 is

 th
e 

m
ea

n 
of

 th
e 

C
-s

co
r e

s o
f t

he
 n

ul
l m

at
ri

ce
s)

, t
he

 st
an

da
r d

 d
ev

ia
tio

n
of

 th
e 

nu
ll 

di
st

ri
bu

tio
n 

(S
sim

), 
th

e 
on

e-
ta

ile
d 

pr
ob

ab
ili

ty
 fo

r a
gg

re
ga

tio
n 

(p
[C

ob
s≤

C
ex

p]
), 

th
e 

on
e-

ta
ile

d 
pr

ob
ab

ili
ty

 fo
r s

eg
re

ga
tio

n 
(p

[C
ob

s≥
C

ex
p]

), 
an

d 
a 

m
ea

su
re

 o
f s

ta
nd

ar
di

ze
d 

siz
e 

ef
fe

ct
, a

s d
ef

in
ed

by
 G

ot
el

li 
an

d 
R

ho
de

 2
00

2 
(S

E
S)

. T
he

 p
-v

al
ue

s t
ha

t w
er

e 
st

at
ist

ic
al

ly
 si

gn
ifi

ca
nt

 (p
 ≤

 0
.0

5)
 a

nd
 m

ar
gi

na
lly

 si
gn

ifi
ca

nt
 (0

.0
5 

≤ 
p 

≤ 
0.

10
) a

re
 h

ig
hl

ig
ht

ed
 in

 b
ol

d 
le

tt
er

s.

Lo
ca

lit
y

Sc
en

ar
io

A
lg

or
ith

m
n

C
ob

s
C

ex
p

S sim
p(

C
ob

s≤
C

ex
p)

p(
C

ob
s≥

C
ex

p)
SE

S
([

C
ob

s–
C

ex
p]

/S
sim

)

1
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

B
yH

os
tW

ei
gh

t
5

1.
00

0.
40

0.
49

1.
00

0
0.

40
1

1.
22

1
1

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Eq

ui
pr

ob
ab

le
5

1.
00

0.
39

0.
49

1.
00

0
0.

39
2

1.
24

4
1

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Pr

op
or

tio
na

l
5

1.
00

0.
39

0.
49

1.
00

0
0.

38
7

1.
25

7
1

In
cl

ud
in

g 
em

pt
y 

ho
st

s
Fi

xe
d-

B
yH

os
tW

ei
gh

t
9

1.
00

3.
10

1.
56

0.
17

2
0.

95
9

–1
.3

43
1

In
cl

ud
in

g 
em

pt
y 

ho
st

s
Fi

xe
d-

Eq
ui

pr
ob

ab
le

9
1.

00
3.

07
1.

52
0.

16
8

0.
96

0
–1

.3
65

2
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

B
yH

os
tW

ei
gh

t
16

8.
33

10
.0

3
3.

17
0.

44
5

0.
64

1
–0

.5
37

2
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Eq
ui

pr
ob

ab
le

16
8.

33
10

.3
8

3.
94

0.
40

2
0.

67
9

–0
.5

21
2

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Fi

xe
d

16
8.

33
9.

07
0.

82
0.

41
0

1.
00

0
–0

.9
02

2
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Pr
op

or
tio

na
l

16
8.

33
8.

13
3.

88
0.

64
5

0.
44

6
0.

05
3

3
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

B
yH

os
tW

ei
gh

t
25

12
.6

7
12

.9
9

5.
31

0.
51

4
0.

52
8

–0
.0

61
3

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Eq

ui
pr

ob
ab

le
25

12
.6

7
13

.1
1

5.
29

0.
50

5
0.

53
9

–0
.0

84
3

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Fi

xe
d

25
12

.6
7

13
.0

2
1.

20
0.

83
1

0.
55

7
–0

.2
98

3
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Pr
op

or
tio

na
l

25
12

.6
7

11
.1

3
5.

06
0.

65
7

0.
38

9
0.

30
4

3
In

cl
ud

in
g 

em
pt

y 
ho

st
s

Fi
xe

d-
B

yH
os

tW
ei

gh
t

33
12

.6
7

37
.1

6
11

.2
7

0.
01

4
0.

99
0

–2
.1

73
3

In
cl

ud
in

g 
em

pt
y 

ho
st

s
Fi

xe
d-

Eq
ui

pr
ob

ab
le

33
12

.6
7

37
.5

1
11

.4
1

0.
01

3
0.

99
1

–2
.1

77
4

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
B

yH
os

tW
ei

gh
t

9
1.

67
2.

99
1.

66
0.

20
3

0.
80

2
–0

.7
98

4
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Eq
ui

pr
ob

ab
le

9
1.

67
3.

10
1.

67
0.

18
7

0.
81

9
–0

.8
58

4
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Pr
op

or
tio

na
l

9
1.

67
2.

35
1.

62
0.

34
1

0.
66

9
–0

.4
23

5
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

B
yH

os
tW

ei
gh

t
7

5.
33

2.
98

1.
40

0.
97

3
0.

07
8

1.
68

0
5

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Eq

ui
pr

ob
ab

le
7

5.
33

3.
05

1.
38

0.
97

2
0.

08
5

1.
64

6
5

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
Fi

xe
d

7
5.

33
5.

35
0.

39
0.

75
6

0.
63

0
–0

.0
52

5
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Pr
op

or
tio

na
l

7
5.

33
2.

81
1.

39
0.

98
0

0.
06

3
1.

82
2

5
In

cl
ud

in
g 

em
pt

y 
ho

st
s

Fi
xe

d-
B

yH
os

tW
ei

gh
t

8
5.

33
3.

54
1.

52
0.

91
9

0.
17

7
1.

17
8

5
In

cl
ud

in
g 

em
pt

y 
ho

st
s

Fi
xe

d-
Eq

ui
pr

ob
ab

le
8

5.
33

3.
70

1.
51

0.
90

8
0.

20
3

1.
07

6
6

E
xc

lu
di

ng
 e

m
pt

y 
ho

st
s

Fi
xe

d-
B

yH
os

tW
ei

gh
t

12
2.

00
2.

13
1.

78
0.

76
8

0.
73

0
–0

.0
73

6
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Eq
ui

pr
ob

ab
le

12
2.

00
2.

17
1.

81
0.

76
2

0.
73

6
–0

.0
93

6
E

xc
lu

di
ng

 e
m

pt
y 

ho
st

s
Fi

xe
d-

Pr
op

or
tio

na
l

12
2.

00
1.

90
1.

75
0.

81
3

0.
67

8
0.

05
5

6
In

cl
ud

in
g 

em
pt

y 
ho

st
s

Fi
xe

d-
B

yH
os

tW
ei

gh
t

14
2.

00
6.

40
3.

17
0.

13
4

0.
91

9
–1

.3
88

6
In

cl
ud

in
g 

em
pt

y 
ho

st
s

Fi
xe

d-
Eq

ui
pr

ob
ab

le
14

2.
00

6.
47

3.
12

0.
12

7
0.

92
2

–1
.4

31



4

Table A2. Results from one-sample t-tests to compare the values of standardized effect size to the null hypothesis of zero. See also Fig. A2.
The p-values that were statistically significant (p ≤ 0.05) and marginally significant (0.05 ≤ p ≤ 0.10) are highlighted in bold letters.

Scenario Algorithm tstat DF p (two-tailed) Mean difference

Excluding empty hosts Fixed-Equiprobable 0.545 5 0.609 0.222
Excluding empty hosts Fixed-Fixed –1.652 2 0.240 –0.418
Excluding empty hosts Fixed-Proportional 1.474 5 0.200 0.511
Excluding empty hosts Fixed-ByHostWeight 0.591 5 0.580 0.239
Including empty hosts Fixed-Equiprobable –1.376 3 0.262 –0.974
Including empty hosts Fixed-ByHostWeight –1.278 3 0.291 –0.931

All Fixed-Equiprobable –0.640 9 0.538 –0.256
All Fixed-Fixed –1.652 2 0.240 –0.418
All Fixed-Proportional 1.474 5 0.200 0.511
All Fixed-ByHostWeight –0.570 9 0.583 –0.229

Excluding empty hosts All 1.132 20 0.271 0.218
Including empty hosts All –2.026 7 0.082 –0.953

Table A3. Results from the GLM analyses for the standardized effect size (SES), the probability of aggregation (p[Cobs≤Cexp]) and the
probability of segregation (p[Cobs≥Cexp]). See also Figs. A2 and A3. The p-values that were statistically significant (p ≤ 0.05) and
marginally significant (0.05 < p ≤ 0.10) are highlighted in bold letters.

SES ([Cobs–Cexp]/Ssim) p(Cobs≤Cexp) p(Cobs≥Cexp)

F DF p F DF p F DF p

Scenario 13.268 1 0.036 9.497 1 0.054 9.334 1 0.055
Algorithm 8.659 3 0.002 1.235 3 0.340 11.076 3 0.001
Locality 3.365 5 0.151 2.261 5 0.246 4.021 5 0.102
Scenario-Algorithm interaction 2.404 1 0.219 0.358 1 0.592 0.440 1 0.555
Scenario- Locality interaction 2300.598 3 <0.001 8308.128 3 <0.001 1054.024 3 <0.001
Algorithm- Locality interaction 242.049 12 <0.001 804.206 12 <0.001 218.883 12 <0.001
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Fig. A1. Relationships among the number of individuals per locality (n) and (A) the variation in the null distribution of C-scores (Ssim),
(B) the standardized effect size (SES), (C) the probability of aggregation (p[Cobs≤Cexp]), and (D) the probability of segregation
(p[Cobs≥Cexp]). For each relationship the p-value has been adjusted for non-independence among points (see text for details). Algorithms:
F-E: fixed-equiprobable, F-F: fixed-fixed, F-P: fixed-proportional, and F-W: fixed-probability by host weight.
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Fig. A3. Comparison of: (A) probability of aggregation, and (B) probability of segregation among the categories of Scenario and
Algorithm. For each case: the box represent the 25 to 75 percentiles of the distribution, the bold horizontal line in the box represent the
median, and the top and bottom lines represent the maximum and minimum values respectively.

Fig. A2. Comparison of the standardized effect size values per Scenario and Algorithm categories. The dashed line across the figure
represents the value expected under the null hypothesis of random assembly. For each case: the box represent the 25 to 75 percentiles of
the distribution, the bold horizontal line in the box represent the median, and the top and bottom lines represent the maximum and
minimum values respectively.


