

Micro- and Macrohabitat Associations in Mojave Desert Rodent Communities

Author(s): Richard D. Stevens and J. Sebastián Tello Source: Journal of Mammalogy, 90(2):388-403. 2009. Published By: American Society of Mammalogists DOI: <u>http://dx.doi.org/10.1644/08-MAMM-A-141.1</u> URL: <u>http://www.bioone.org/doi/full/10.1644/08-MAMM-A-141.1</u>

BioOne (<u>www.bioone.org</u>) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

MICRO- AND MACROHABITAT ASSOCIATIONS IN MOJAVE DESERT RODENT COMMUNITIES

RICHARD D. STEVENS* AND J. SEBASTIÁN TELLO

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

Characterizing habitat associations of species is fundamental to understanding the mechanistic basis of community organization. Typically, investigators estimate microhabitat characteristics that account for significant amounts of variation in species composition. Nonetheless, highly resolved microhabitat characteristics may account for no more variation in species composition than coarse macrohabitat distinctions, particularly in heterogeneous environments. We describe micro- and macrohabitat associations of 13 species of nocturnal rodents distributed across 31 communities within the Mojave Desert. Rodent species composition, biomass of 81 perennial plant species, representation of 9 soil and rock classes, and the percent cover of annuals and grasses were quantified. Communities also were assigned to macrohabitats based on qualitative characteristics. Multivariate analysis of variance indicated highly significant community-wide differences among macrohabitats and species-specific analyses of variance substantiated differences for all but 1 species analyzed. Microhabitat characteristics accounted for approximately 55% of the variation in rodent species composition. Moreover, microhabitat characteristics accounted for 17% variation in rodent species composition over and beyond that shared with macrohabitat distinctions. Micro- and macrohabitat perspectives provide complimentary insights into species composition of rodent communities. Edaphic features in particular represented important environmental heterogeneity that likely acts both directly on rodent species composition and indirectly through influencing variation in plant species composition. Indeed, the Mojave Desert is represented by a spatial mosaic of speciesrich and compositionally dynamic rodent communities that will provide many insights into the coexistence of species at regional spatial scales.

Key words: community structure, desert rodent, habitat selection, macrohabitat, metacommunity, microhabitat, scale, scale-dependence, spatial processes

Of the 4 great North American deserts (Chihuahuan, Great Basin, Mojave, and Sonoran), the Mojave has received the least focus in terms of organization of mammalian communities. This is especially true of rodents despite the fact that they are an important component of the mammalian fauna in many desert systems. In the Mojave Desert, rodents are represented by approximately 58 taxa (Patterson et al. 2005). Rodents play important ecological roles as consumers, secondary producers, and mechanical processors (Brown 1986). In particular, rodents are important seed and spore dispersers, consumers of vegetation, seeds, and fruits (Reichman and Price 1993), and represent a substantial resource base for many other predators (Kotler 1984).

Most of the area of North American deserts falls within the Basin and Range province of western North America

© 2009 American Society of Mammalogists www.mammalogy.org

(MacMahon 1979). Accordingly, regular alternation of desert basins and mountain ranges combined with predictable but complex toposequences create considerable spatial heterogeneity (Whitford 2002). This is especially true in the Mojave Desert, the driest and least productive desert in North America. Even within a particular toposequence, edaphic characteristics and microclimates can be variable across short distances, further increasing spatial heterogeneity. Minute differences in relative humidity between different mountain slopes affect distribution of dominant plant species such as blackbrush (Coleogyne ramosissima), thereby creating substantial habitat heterogeneity across sharp but short gradients (Beatley 1975). Abundance of desert rodents has been demonstrated to exhibit strong relationships with environmental characteristics, and a better understanding of quantitative environmental characteristics important to distribution and abundance of desert rodents can greatly inform basic biology of poorly known desert systems.

Microhabitat characteristics commonly are used to understand variation in abundance of species and to identify important quantifiable niche dimensions. Particular microhabitat

^{*} Correspondent: rstevens@lsu.edu

FIG. 1.—Map of the Mojave National Preserve demonstrating sampled communities. Acronyms are as follow: AP, alkali playa; BB, blackbrush woodland; CR, creosote bajada; JT, Joshua tree woodland; LB, lava bed; PJ, piñon–juniper woodland; SD, sand dune; YC, Mojave yucca woodland.

characteristics that are correlated with variation in abundance are inferred to reflect important decisions made by individuals that maximize fitness (i.e., density-dependent habitat selection-Rosenzweig 1991). Nonetheless, microhabitat characteristics are not the only salient forms of environmental heterogeneity. Macrohabitat features-more gross and discrete habitat differences typically defining different plant communities or life zones-also can affect consumer densities yet are not necessarily completely embodied by underlying microhabitat characteristics (Morris 1987). Variation among macrohabitats often is greater than variation among microhabitats within a macrohabitat. Accordingly, microhabitat variables may have limited ability to predict the abundance of consumer species, especially at large spatial scales. Distinction between microhabitat and macrohabitat selection has made evident the degree to which individuals are actively selecting particular microhabitat characteristics or are simply preferentially responding to coarser differences reflected in macrohabitats (Morris 1987). Indeed, before effects of specific microhabitat characteristics can be implicated as important in determining abundance of populations and ultimately the diversity of communities, effects of macrohabitat should be evaluated.

We describe the comparative community ecology of nocturnal rodents in the eastern Mojave Desert. Specifically, we examine 31 communities occurring in a series of interdigitating macrohabitats. We quantify microhabitat characteristics that are important in predicting abundance of common species and we evaluate the degree to which microhabitat characteristics predict rodent abundances over and beyond expectations from simple macrohabitat delimitations.

MATERIALS AND METHODS

Study site and sampling.—The Mojave National Preserve comprises close to 600,000 ha and its northern border is located approximately 80 km southwest of Las Vegas, Nevada, in San

Bernardino County, California (Fig. 1). Our study area was located on a broad alluvial fan complex consisting of 4 different materials: limestone, mixed plutonics, quartz monzonite, and mixed volcanics (Young et al. 2004). Elevation ranges from 85 to 2,417 m (Beever et al. 2006). Average precipitation ranges from 130 to 230 mm annually (Young et al. 2004). Dominant vegetation (Brooks et al. 2004) is *Larrea tridentata* (48% of study site), *Yucca brevifolia* (26%), and *Yucca schidigera* (18%).

Between September and November 2005, we sampled 31 communities from 8 of the most extensive macrohabitats within the Mojave National Preserve: creosote bajada (7 communities), Joshua tree woodland (5), blackbrush scrub (4), Mojave yucca woodland (6), piñon-juniper woodland (3), lava bed (2), sand dune (2), and alkali playa (2). Herein we refer to macrohabitats as large, coarse-grained discontinuities associated with discrete plant associations whereas we refer to microhabitat as small-scale, fine-grained, and quantifiable variation in floral and edaphic characteristics of communities. We sampled rodent species composition using paired 500-m transects separated by approximately 100 m. One Sherman live trap (H. B. Sherman Traps, Inc., Tallahassee, Florida) was placed every 5 m for a total of 101 traps on each transect and 202 traps sampling each community. Sampling was conducted for 3 nights (606 total trap-nights of effort) and animals were marked and released each morning. Rodent relative abundance data was based on the number of unique individuals caught during the 3 nights (i.e., recaptures not counted). Rodent relative abundances were square-root transformed before analyses to normalize the count data and so that dominant species did not dominate results (Legendre and Legendre 1998). Pocket mice (Chaetodipus and *Perognathus*) can become inactive during the coldest portions of the year (Kenagy and Bartholemew 1985). Although we caught pocket mice during the entire field season, this does not ensure that no individuals became inactive during our sampling; estimates of relative abundance for these 2 genera may be conservative. The ground squirrels Spermophilus tereticaudus and Ammospermophilus leucurus are primarily diurnal and as such their relative abundance more reflects the amount of time traps were open in the morning and afternoon than their actual relative abundance on the sampling transects. Sciurids were not considered in any analysis. Reithrodontomys megalotis was captured at 2 communities and had relative abundances too low to make meaningful species-specific analyses; this species was excluded from analyses focusing on species-specific patterns. Rodent sampling adhered to Louisiana State University Institutional Animal Care and Use Committee protocol 06-033 based on guidelines approved by the American Society of Mammalogists (Gannon et al. 2007). Voucher specimens are deposited in the Museum of Natural Science, Louisiana State University. Data are available from the authors upon request.

Sampling of vegetative characteristics of each community was based on a total of 4 additional transects, each 2 m wide and 50 m long, running perpendicular to each mammal transect. The positions of these vegetation transects were evenly spaced, located at 0-, 167-, 333-, and 500-m marks along the

mammal transects. On each transect, length, width, and height of each perennial plant were determined to estimate the sum of the biomass of each species. Within each vegetation transect, we calculated the percent cover of all grasses and all annual plants inside two 5×2 -m quadrats set between 15 and 20 m from the center of the vegetation transect. We estimated mean percent values in each quadrat based on independent assessments by 2 observers.

Soil microprofile was characterized based on ten 1-dm³ samples evenly spaced along mammal transects. Each sample was manually sieved and separated based on particle size into 9 categories: <1.4 mm, 1.4-<3.18 mm, 3.18-<4.75 mm, 4.75-<6.3 mm, 6.3-<12.5 mm, 12.5-<25 mm, 25-<50 mm, 50-<120 mm, and >120 mm. Each portion was weighed and mean proportional contribution of each particle size class was used for analyses.

We characterized species diversity of each macrohabitat using additive forms of α , β , and γ (Lande 1996). Specifically, mean α is the number of species shared among communities within a macrohabitat type, β is the mean number of unique species within communities, and γ is the sum of mean α and β .

Macrohabitat effects.—One-way multivariate analysis of variance (MANOVA) was used to evaluate significant differences among macrohabitats based on rodent species composition of replicated communities. We also used discriminant function analysis (DFA) to illustrate significant differences determined by MANOVA. We conducted a posteriori least significant difference tests (Sokal and Rohlf 1995) to determine pairwise differences among macrohabitats based on site scores from the DFA. We also conducted 1-way analyses of variance (ANOVA) on each rodent species separately to determine which likely contributed to the significant MANOVA.

Microhabitat effects.—We characterized microhabitat using biomass of 81 perennial plant species, 9 soil microprofile classes, percent cover of grasses, and percent cover of annuals. We conducted a cluster analysis to investigate the similarity in the response of different rodent species to environmental gradients spanning our study system. Based on standardized Pearson correlation coefficients (Sokal and Rohlf 1995) of the relationship between each environmental variable and the relative abundance of each rodent species, we calculated a matrix of Euclidean distances among all species. Using these distances and an unweighted pair group method with arithmetic mean (UPGMA) algorithm, we built a dendrogram of relationships among rodent species that depicts their hierarchical clustering in terms of similarities or differences in their association to environmental characteristics.

We used principal component analysis (PCA) based on a covariance matrix to reduce redundancy and hence dimensionality of perennial and soil microprofile data sets separately. Perennials were square-root transformed so as to normalize data and reduce influence of species with very high biomass. PCA reduced perennial and soil microprofile data sets to 6 and 1 variables (principal components [PCs]), respectively, based on those derived axes that had eigenvalues greater than expected based on a broken-stick model (Jackson 1993).

For the community-wide focus we conducted a redundancy analysis (RDA) whereby perennial PCs, soil profile PC, annual percent cover, and grass percent cover were independent variables and rodent relative abundances at each community were dependent variables. RDA selects a combination of independent variables that maximally accounts for variation in dependent variables (Jongman et al. 1995). This analysis also provides amount of variation accounted for by dependent variables (i.e., adjusted R^2) as well as statistical significance of the result based on 10,000 permutations of the original data. This RDA was conducted using Matlab routines written by Peres-Neto et al. (2006). For species-specific analyses, stepwise multiple regression determined the linear combination of 9 (6 perennial PCs, 1 soil PC, grass variable, and annual variable) microhabitat variables that could best predict relative abundance of each species of nocturnal rodent.

We also were interested in amount of unique variation accounted for by microhabitat associations after controlling for macrohabitat affiliation of each community and whether microhabitat variables can explain significantly more variation in rodent relative abundances after accounting for simple macrohabitat designations. We conducted a partial RDA where microhabitat variables were the independent matrix and macrohabitat associations represented the covariate matrix. Macrohabitats were coded as dummy variables in a covariate matix according to Legendre and Legendre (1998). Significance was based on 10,000 permutations of the original data. We used Matlab routines written by Peres-Neto et al. (2006) to conduct these analyses.

RESULTS

Our sampling of 31 communities from 8 different macrohabitats resulted in 18,786 trap-nights that generated 6,108 unique captures (i.e., not counting recaptures) of 15 species. Species were not distributed uniformly across macrohabitats or communities (Table 1). *Dipodomys merriami* and *Neotoma lepida* occurred in the greatest number of macrohabitats and communities, whereas *R. megalotis* exhibited the narrowest distribution, occurring in only 2 macrohabitats and 2 communities. On average, species occurred in 5.15 macrohabitats ranged from 6 to 10 and mean α was always greater than β and varied from 4 to 7.25.

Macrohabitats differed significantly in terms of rodent species composition (F = 8.48, d.f. = 91,77, P < 0.001, $R^2 = 0.52$). Least significant difference tests performed on DFA scores on the first 2 DFA axes for communities indicated that all macrohabitats were significantly different from at least 4 other macrohabitats (Fig. 2). Species-specific ANOVAs indicated that 11 of 12 species exhibited significant differences among macrohabitats (Table 2). *Perognathus longimembris* exhibited no significant differences in relative abundance across the 8 macrohabitats.

Relative abundances of rodents exhibited numerous and varied associations with microhabitat characteristics (Appendix I). However, species could be aggregated into 4 major groups

TABLE 1.—Presence or absence of nocturnal rodent species across 8 macrohabitats examined and estimates of α , β , and γ diversity. Occurrence within a macrohabitat is denoted with $\times \times$. γ refers to the total number of species found in all communities within a macrohabitat. Mean α refers to the average number of species within communities representing a macrohabitat. β refers to the number of unique species. Incidence represents the proportion of all 31 communities in which a species was encountered.

	Playa	Blackbrush	Creosote	Joshua tree	Lava	Piñon-juniper	Dune	Yucca	Incidence
Species									
Chaetodipus formosus		××	$\times \times$	××	××	××	××	××	0.45
Chaetodipus penicillatus	$\times \times$		$\times \times$				$\times \times$		0.13
Dipodomys deserti	$\times \times$						$\times \times$		0.10
Dipodomys merriami	$\times \times$	××	$\times \times$	××	0.97				
Dipodomys panamintinus		$\times \times$	$\times \times$	$\times \times$		$\times \times$		$\times \times$	0.61
Neotoma lepida	$\times \times$	0.97							
Onychomys torridus	$\times \times$	0.84							
Perognathus longimembris	$\times \times$	$\times \times$	$\times \times$	$\times \times$			$\times \times$	$\times \times$	0.52
Peromyscus crinitus		$\times \times$			$\times \times$				0.10
Peromyscus eremicus		$\times \times$		$\times \times$	0.68				
Peromyscus maniculatus	$\times \times$	$\times \times$	$\times \times$	$\times \times$		$\times \times$		$\times \times$	0.71
Peromyscus truei		$\times \times$		$\times \times$		××			0.16
Reithrodontomys megalotis				$\times \times$		$\times \times$			0.06
Diversity									
γ	7	10	9	10	6	9	7	8	
Mean α	4	7.25	6	7	5.5	6.33	6.5	6.3	
β	3	2.75	3	3	0.5	2.67	0.5	1.7	

corresponding to their microhabitat preferences (Fig. 3). The 1st group contains only Peromyscus truei. This species has the most dissimilar microhabitat preference, and is almost solely found in high-elevation communities, typically characterized by the presence of juniper (Juniperus) and rocky soils. The 2nd group contains Chaetodipus formosus, Peromyscus crinitus, N. lepida, and Peromyscus eremicus (Fig. 3). C. formosus and P. crinitus are associated with rocky habitats, and are particularly abundant in lava beds, and in the case of C. formosus also in rocky creosote bajadas. N. lepida and P. eremicus also were very abundant in mid- to low-elevation rocky sites, but they are more general in their habitat use, being present in a large number of communities (Table 1). The 3rd group consists entirely of heteromyid rodents: Dipodomys deserti, Chaetodipus penicillatus, Perognathus longimembris, and D. merriami. This group of species generally prefers communities of low elevation and fine to intermediate soil particles. C. penicillatus and D. deserti share the most similar habitat preferences; they are strongly associated with fine-particle substrates, such as sandy soils of sand dunes, or clayey soils of alkali playas. However, P. longimembris, and especially D. merriami are usually more generalist species, occurring in a large variety of habitats. The 4th and final group is formed by Dipodomys panamintinus, Peromyscus maniculatus, and Onychomys torridus. These species frequently are found in midelevation communities, associated mostly with yucca woodlands, Joshua tree woodlands, and blackbrush scrub (see also Table 1, Fig. 4, and Appendix I).

Relative abundance of each species of rodent was correlated with at least 4 microhabitat characteristics (Appendix I). *D. merriami* exhibited the greatest number of significant correlations (36). Moreover, its response was different from other species in that it exhibited primarily negative correlations with vegetative characteristics. All other species primarily exhibited positive correlations with vegetative characteristics, although the identity of which perennial species was correlated with which rodent species was quite variable.

Principal component analysis reduced the 81 perennial shrub variables to 6 derived variables that accounted for 83.5% of the variation among communities. Correlations of original plant species with PCs can be used to interpret identity of derived variables (Appendix II; Table 3). All 6 PCs have straightforward interpretations reflecting transitions from one macrohabitat to another. A 2nd PCA reduced 9 soil particle sizes to 1 derived variable that accounted for 77% of the variation among communities. Correlations of original soil variables with this PC indicated that it represented an axis ranging from sandy soils at low values to rocky soils at high values.

Multiple regression indicated numerous significant relationships between microhabitat PCs and rodent relative abundances (Table 4). All species except *P. longimembris* could be significantly related to some form of microhabitat variation. Significant coefficients ranged from 0.20 for *O. torridus* to 0.87 for *D. merriami*. The soil PC significantly loaded into multiple regression models for 7 of 11 species, perennial PCs for 9 of 11 species, annuals for 2 of 11 species, and grasses for 9 of 11 species exhibiting significant relationships. Soil PC1 was the most frequent variable to load 1st, doing so for 5 species.

When all species were analyzed together, microhabitat PCs accounted for approximately 55% of the variation among communities in terms of rodent species composition. Sites with similar macrohabitat affinity tended to be ordered similarly in the multivariate space defined by the RDA (Fig. 4). The soil PC and the 1st perennial PC were the most important microhabitat variables accounting for rodent species composition across our study area (Fig. 4A). *O. torridus*, *P. longimembris*, *P. truei*, and *R. megalotis* exhibited weak relationships with the first 2 derived axes from RDA, whereas all other species exhibited moderate to strong relationships (Fig. 4B).

Dune

Yucca

FIG. 2.—Results from discriminant function analysis illustrating differences among macrohabitats based on rodent abundances. A) Communities are arranged according to their positions on discriminant functions axes. Vector plot indicates the contribution of species to differences on each axis (inset, upper figure). B) Matrix indicates significant pairwise differences (asterisk, P < 0.05) between macrohabitats based on least significant difference tests conducted on discriminant function scores. Differences along axis 1 are represented in the upper triangle, whereas differences along axis 2 are represented in the lower triangle.

Microhabitat characteristics explained variation in rodent species composition beyond that expected from simple macrohabitat associations. Partial RDA indicated that when shared variation between microhabitat and macrohhabitat variables is controlled, microhabitat still accounts for an additional 17% of the variation in rodent species composition (P < 0.001).

DISCUSSION

Our understanding of North American desert rodent community organization comes primarily from studies in the Chihuahuan and Sonoran deserts (Brown and Munger 1985; Heske et al. 1994; Price 1978; Rosenzweig and Winakur 1969) and to a lesser degree from the Great Basin (Parmenter and MacMahon 1983; Patterson and Brown 1991). Within the Mojave, investigators have tended to focus on the structure of communities in single habitat types such as creosote bajadas (Chew and Butterworth 1964; Garland and Bradley 1984), saltbush flats (Kenagy 1973; Kenagy and Bartholomew 1985), Joshua tree woodlands (Price et al. 2000), or sand dunes (Brown 1973). Our study represents a comprehensive exam-

TABLE 2.—Results from 1-way ANOVA evaluating differences among 8 macrohabitats regarding abundances of 13 species of rodents.

Species	F	P-value
Chaetodipus formosus	3.861	0.014
Chaetodipus penicillatus	4.310	0.015
Dipodomys deserti	391.963	< 0.001
Dipodomys merriami	7.812	< 0.001
Dipodomys panamintinus	3.965	0.005
Neotoma lepida	5.166	0.001
Onychomys torridus	2.516	0.041
Perognathus longimembris	0.935	0.484
Peromyscus crinitus	46.48	0.002
Peromyscus eremicus	3.536	0.011
Peromyscus maniculatus	8.910	< 0.001
Peromyscus truei	6.176	0.010

ination of comparative community ecology of rodents across multiple habitats in this region. Moreover, this study demonstrates that not only is the inclusion of numerous macrohabitats necessary to more comprehensively characterize rodent community structure in this desert but also that description based on fine-grained microhabitat characteristics significantly contributes to such a characterization.

Importance of edaphic characteristics.—Soil microprofile characteristics contributed greatly to canonical microhabitat axes important in explaining spatial variation in rodent species composition. Moreover, soil characteristics commonly were important microhabitat features for particular species (11 of 13 taxa). Although the examination of the importance of soil characteristics has been fairly common in studies of rodent community structure conducted outside North America (Corbalan 2006; Krasnov et al. 1996; Rogovin et al. 1994; Scott and Dunstone 2000; Shenbrot 1992; Shenbrot and Rogovin 1995), these characteristics have been only infrequently examined in North American deserts in general and the Mojave Desert in particular (Hardy 1945; Root et al. 2000). That soil micro-

FIG. 3.—Dendrogram produced by cluster analysis based on standardized Pearson correlation coefficients of the abundance of each species with the original environmental variables. Numbers mark the nodes that give origin to the 4 major clusters of species (see text for interpretation).

FIG. 4.—Results from redundancy analysis examining the relationship between rodent species composition and microhabitat variables. Symbols represent communities from particular macrohabitats. Arrows represent vectors describing the relationship of A) microhabitat variables and B) rodent species density to relationships defined by the redundancy axes. Microhabitat variables are as follows: P1–P6, 6 perennial principal components (PCs); S1, soil PC; Annual, annual percent cover; Grass, grass percent cover. Rodent vectors are as follows: C.FOR, *Chaetodipus formosus*; C.PEN, *Chaetodipus penicillatus*; D.DES, *Dipodomys deserti*; D.MER, *Dipodomys merriami*; D.PAN, *Dipodomys panamintinus*; N.LEP, *Neotoma lepida*; O.TORR, *Onychomys torridus*; P.LON, *Perognathus longimembris*; P.CRI, *Peromyscus crinitus*; P.ERE, *Peromyscus eremicus*; P.MAN, *Peromyscus maniculatus*; P.TRU, *Peromyscus truei*; R.MEG, *Reithrodontomys megalotis*.

profile affects rodent species composition is logical. Direct effects might include appropriate substrates within which to construct burrows (Luna et al. 2002; Romanach et al. 2005), substrates matching in color so as to enhance evasion of predators (Dice 1939; Krupa and Geluso 2000), and particle size that affects seed foraging efficiency (Wasserberg et al. 2005). Soils also may have indirect effects such as providing the proper substrate for important resource plants thereby enhancing productivity (Huerta-Martinez et al. 2004; Ward et al. 1993) and ultimately seed rain that provides a dietary source for many species. Indeed, edaphic characteristics are significant contributors to rodent community structure in this system and better appreciation of the relative contributions of direct and indirect effects of soil microprofile may greatly add to our mechanistic understanding of spatial variation in the distribution and relative abundance of rodents in North American deserts.

Macrohabitat and microhabitat perspectives.—Interesting species-specific patterns emerged from our analyses. For example, *P. truei* exhibited only minor associations with DFA and RDA axes that summarized important variation in terms of rodent species composition. Nonetheless, this species fell out as the most distinct based on the cluster analysis. This species was restricted to high-elevation sites primarily in piñon–juniper woodlands. In fact, Hoffmeister (1981:4) pointed out that "no other species of *Peromyscus*, or any other small rodent, is as exclusively confined to the piñon–juniper belt or occurs as abundantly in it as does *P. truei*." Although 8 other species occur in this macrohabitat, they tend to do so with relatively low relative abundance and tend not to have strong correlations with microhabitat characteristics found there. Thus, habitat specialization of *P. truei* makes it distinct from

others in the Mojave Desert. Moreover, the low proportional representation of the piñon–juniper macrohabitat likely explains weak associations with major axes of variation defined by RDA and DFA.

Dipodomys merriami exhibited a quite distinct response to microhabitat variables. Although this species occurred in approximately 97% of the communities we examined, it was different from all other species in its negative response to habitat variables. All significant correlations with vegetative characteristics except that with L. tridentata were negative, reflecting the well-known affinity of this species for open microhabitats (Rosenzweig and Winakur 1969). This is further demonstrated by the extreme position of this species on the 1st RDA axis. Use of more-open microhabitats has been related to foraging economics (Reichman and Oberstein 1977) or a response to minimize risk of predation (Bowers 1988; Kotler 1984; Price et al. 1984) or competitive interactions (Bowers et al. 1987; M'Closkey 1981; Price 1978). Nonetheless, D. merriami grouped with a relatively large assemblage of heteromyids in the cluster analysis and was not highly differentiated from others based on the DFA. These contrasting results highlight differences between microhabitat and macrohabitat perspectives.

Significant differences in relative abundances of rodents among macrohabitats demonstrate this important determinant of community organization in the Mojave Desert. Macrohabitat selection occurs when the precise mix and amount of resources required by an organism are related primarily to discontinuities at larger spatial scales. For example, production of seed and mast consumed by granivores can exhibit more variation among macrohabitats than among microhabitats within a macrohabitat. This is even more true as differences in plant species composition and age structure between macrohabitats increase **TABLE 3.**—Results from principal component analysis on 81 perennial plant species. PC refers to a particular principal component, Variance explained refers to the amount of unique variation accounted for by that component, and Cumulative variance refers to the cumulative variation accounted for by a particular PC and all other PCs extracted prior. Gradient represents the interpretation of a particular PC.

PC	Variance explained	Cumulative variance	Gradient
1	33.8	33.8	Creosote to Joshua tree
2	17.6	51.4	Joshua tree/yucca to piñon-juniper
3	11	62.4	Amount of Joshua tree
4	9	71.4	Sage to piñon-juniper
5	7.5	78.8	Saltbush to piñon-juniper
6	4.7	83.5	Yucca to saltbush

(Morris 1987). Macrohabitat variables account for much of the variation embodying density-dependent habitat selection. In many cases macrohabitat associations account for more variation in species relative abundance than quantitative microhabitat variables (Coppeto et al. 2006; Jorgensen and Demarais 1999; Morris 1984, 1987), and in some cases the effect of microhabitat completely disappears once macrohabitat is accounted for (Morris 1984, 1987).

Considerations of macrohabitat distinctions alone can substantively account for spatial variation in rodent species composition. Thus, from a practical perspective, considering only differences among macrohabitats can account for more than the majority of variation in species composition among sites. Although for predictive and mechanistic purposes it is necessary to know the underlying microhabitat characteristics that drive spatial variation in species composition, such highly resolved information may not be necessary to account for major differences in species composition. Alternatively, results from partial RDA demonstrate that microhabitat variables do account for substantive unique variation not shared with macrohabitat distinctions. Indeed, micro- and macrohabitat represent complimentary perspectives that provide insight into variation in rodent species composition in the Mojave Desert.

Spatial and temporal dynamics at the regional scale.—Our results provide a perspective complementary to more typical intensive examinations of single communities, a perspective that can provide valuable insights into the mechanistic bases of community organization. Patterns described here have implications not only to spatial variation in community structure but also the coexistence of species of rodents at regional scales. For example, almost one-half of the species occurred in less than half of the communities. Moreover, the average Spearman rank correlation of pairwise relative abundances was close to 0 ($\bar{X} =$ 0.041, 95% confidence interval = -0.032-0.114, upper and lower extremes = -0.65, 0.79), suggesting that although some relatively strong correlations do exist among species, relative abundances generally are not highly correlated. Idiosyncratic responses of species also are indicated by multivariate analyses. DFA and RDA indicate some concordance among rodent species in terms of microhabitat and macrohabitat preferences. Nonetheless, strong concordance would be indicated if all **TABLE 4.**—Results of stepwise multiple regression analysis of the relationship between rodent species abundances and soil and perennial principal components (SPC and PPC, respectively), grass, and annual (ANN) variables.

Dependent variable	Independent variable(s)	Coefficient of determination	P-value
Chaetodipus formosus	SPC1, PPC1	0.471	< 0.001
Chaetodipus penicillatus	SPC1	0.237	0.006
Dipodomys deserti	SPC1	0.319	0.001
Dipodomys merriami	PPC1, SPC1, grass, PPC6	0.867	< 0.001
Dipodomys panamintinus	PPC1, PPC3	0.325	0.004
Neotoma lepida	PPC3, SPC1, PPC2	0.637	< 0.001
Onychomys torridus	PPC2	0.198	0.012
Perognathus longimembris	No variables selected		
Peromyscus crinitus	SPC1, ANN, grass, PPC6	0.513	0.001
Peromyscus eremicus	SPC1, PPC2, PPC1	0.494	< 0.001
Peromyscus maniculatus	PPC1, ANN	0.538	< 0.001
Peromyscus truei	PPC1, PPC2, PPC6 PPC5, PPC3	0.767	< 0.001

species had response vectors (arrows) of similar length and direction. In contrast, response vectors are distributed throughout the space defined by these 2 analyses. Species do not appear to co-occur in a strongly coordinated fashion across this study area. Strong positive covariation would suggest concerted responses of species to spatial variation in environmental conditions across the landscape (Houlahan et al. 2007), whereas strong negative covariation can characterize competitive interactions (Stevens and Willig 2000; Tello et al. 2008) or compensatory dynamics (Goheen et al. 2005). Such a weak pattern of co-occurrence suggests a Gleasonian pattern of species distributions characterized by highly individualistic responses of species to the environment, the same type of pattern that has been demonstrated for other North American deserts (Brown and Kurzius 1987) as well as in comparative analyses of deserts around the world (Kelt et al. 1996).

Low α diversity is thought to be the rule for desert rodent communities, at least in North America (Brown and Kurzius 1987—mean species richness of 202 communities = 3.24). Moreover, local communities even when in close proximity are highly variable in terms of species composition because they do not share many species (Brown and Kurzius 1987), a pattern indicative of high β diversity. Most rodent species in the southwestern deserts were demonstrated to occur in <30% of the communities within their geographic range and almost onehalf of all species examined occurred at <10 of 202 examined communities (Brown and Kurzius 1987). Similar patterns were not present in this Mojave Desert system. Species richness was relatively high (mean species richness across 31 communities = 6.29), communities shared many species, and β diversity was relatively low. Differences could be for a number of reasons. For example, many previous data have been collected at lowproductivity communities not necessarily characteristic of the entire Mojave Desert. Moreover, even intensive, focused studies in the Mojave have been conducted on low-productivity communities such as creosote bajadas or dunes (Brown 1973, 1975; Brown and Kurzius 1987; Hafner 1977); only the work of Price et al. (2000) has included higher-productivity habitats such as Joshua tree woodlands and reported a total of 10 species. Another possibility is the greater sampling effort employed here. Each community in our study was characterized using 606 trap-nights of effort. Other studies have typically used less effort and this may have made estimates of α diversity conservative. Lastly, these data were collected following a year of above-average precipitation in the Mojave Desert. Thus, an overall increase in α diversity and resultant decrease in β diversity could be the result of responses to a regional increase in productivity. Nonetheless, such a simple causal link has been questioned, at least in other North American deserts (Brown and Ernest 2002).

As exemplified by patterns of α and β diversity across our study area, the Mojave Desert is a dynamic biotic mosaic. This complexity manifests in other characteristics as well. For example, the Mojave Desert is highly heterogeneous in terms of climate. Temperature and the amount of winter snow vary regularly from north to south and the rain shadow effect creates large differences in precipitation from west to east (Ruffner 1978). Our study area occurs in the central Mojave and is characterized by relatively high precipitation and some of the greatest standing plant biomass in the desert (McAuliffe and McDonald 1995). Climate is temporally heterogeneous and unpredictable as well (Davidowitz 2002). Such variability creates conditions of "feast and famine" in terms of resources available to desert rodents (Polis 1991) that ultimately affects distribution. Based on overlapping species range maps obtained from Patterson et al. (2005), with the Mojave ecoregion defined by Olson et al. (2001), it becomes apparent that most rodent species occurring in the Mojave are not endemic. In fact, representative species occur in other ecoregions and tend to have large geographic distributions that do not overlap the entire Mojave Desert but terminate there (53 of 58 or 91%). Because most species are at the edge of their geographic distribution in the Mojave Desert, such fluctuations in productivity likely correspond to dramatic fluctuations in the distribution of desert rodents in this system. Indeed, this study represents a single point estimate in time and species-habitat relationships are likely to fluctuate as plant species richness and individual plant biomass fluctuates across macrohabitats and within microhabitats in response to variable precipitation. Dispersal-mediated changes in species composition in response to fluctuations in productivity may drive spatial and temporal patterns of community structure. Such spatial and temporal complexity suggests that large landscape-scale studies in general and the bourgeoning metacommunity concept (Holyoak et al. 2005; Leibold and Miller 2004; Leibold et al. 2004) in particular may add greatly to our understanding of desert rodent community ecology, especially in the Mojave Desert.

ACKNOWLEDGMENTS

This research was funded by grants from the National Science Foundation (DEB-0535939) and the Louisiana Board of Regents (LEQSF-2006-09). A. Gates provided invaluable field assistance. We also thank the National Park Service, especially D. Hughson, for permission to work in the Mojave National Preserve as well as for logistical support. We thank J. Andre and R. Fulton for verifying plant identifications. D. Kelt provided an exceptional review that greatly improved the manuscript.

LITERATURE CITED

- BEATLEY, J. C. 1975. Climates and vegetation pattern across the Mojave/Great Basin Desert transition of southern Nevada. American Midland Naturalist 93:53–70.
- BEEVER, E. A., M. HUSO, AND D. A. PYKE. 2006. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve. Diversity and Distributions 12:258–268.
- BOWERS, M. A. 1988. Seed removal experiments on desert rodents: the microhabitat by moonlight effect. Journal of Mammalogy 69: 201–204.
- BOWERS, M. A., D. B. THOMPSON, AND J. H. BROWN. 1987. The spatial organization of a desert rodent community: food addition and species removal. Oecologia 72:77–82.
- BROOKS, M., J. MATCHETT, C. WALLACE, AND T. ESQUE. 2004. Fuels mapping and fire hazard assessment in a desert ecosystem. Arid Lands Newsletter 55. http://ag.arizona.edu/OALS/ALN/aln55/ brooks.html. Accessed 5 January 2008.
- Brown, J. H. 1973. Species diversity of seed-eating rodents in sand dune habitats. Ecology 54:775–787.
- BROWN, J. H. 1975. Geographic ecology of desert rodents. Pp. 315– 341 in Ecology and evolution of communities (M. L. Cody and J. M. Diamond, eds.). Belknap Press, Cambridge, Massachusetts.
- BROWN, J. H. 1986. The roles of vertebrates in desert ecosystems. Pp. 51–75 in Pattern and process in desert ecosystems (W. G. Whitford, ed.). University of New Mexico Press, Albuquerque.
- BROWN, J. H., AND S. K. M. ERNEST. 2002. Rain and rodents: complex dynamics of desert consumers. BioScience 52:979–987.
- BROWN, J. H., AND M. A. KURZIUS. 1987. Composition of desert faunas: combinations of coexisting species. Annales Zoologici Fennici 24:227–237.
- BROWN, J. H., AND J. C. MUNGER. 1985. Experimental manipulation of a desert rodent community: food addition and species removal. Ecology 66:1545–1563.
- CHEW, R. M., AND B. B. BUTTERWORTH. 1964. Ecology of rodents in Indian Cove (Mojave Desert) Joshua Tree National Monument, California. Journal of Mammalogy 45:203–225.
- COPPETO, S. A., D. A. KELT, D. H. VAN VUREN, J. A. WILSON, AND S. BIGELOW. 2006. Habitat associations of small mammals at two spatial scales in the northern Sierra Nevada. Journal of Mammalogy 87:402–413.
- CORBALAN, V. 2006. Microhabitat selection by murid rodents in the Monte Desert of Argentina. Journal of Arid Environments 65: 102–110.
- DAVIDOWITZ, G. 2002. Does precipitation variability increase from mesic to xeric biomes? Global Ecology and Biogeography 1: 143–154.
- DICE, L. R. 1939. Variation in the cactus-mouse, *Peromyscus eremicus*. Contributions from the Laboratory of Vertebrate Genetics, University of Michigan 8:1–27.
- GANNON, W. K., R. S. SIKES, AND THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2007. Guidelines of the American Society of Mammalogists for the use of wild animals in research. Journal of Mammalogy 88:809–823.

- GARLAND, T., JR., AND W. G. BRADLEY 1984. Effects of highway on Mojave Desert rodent populations. American Midland Naturalist 111:47–56.
- GOHEEN, J. R., E. P. WHITE, S. K. M. ERNEST, AND J. H. BROWN. 2005. Intra-guild compensation regulates species richness in desert rodents. Ecology 86:567–573.
- HAFNER, M. S. 1977. Density and diversity in Mojave desert rodent and shrub communities. Journal of Animal Ecology 46:925–938.
- HARDY, R. 1945. The influence of types of soil upon the local distribution of some mammals in southwestern Utah. Ecological Monographs 15:71–108.
- HESKE, E. J., J. H. BROWN, AND S. MISTRY. 1994. Long-term experimental study of a Chihuahuan Desert rodent community: 13 years of competition. Ecology 75:438–445.
- HOFFMEISTER, D. F. 1981. *Peromyscus truei*. Mammalian Species 161:1–5.
- HOLYOAK, M., R. D. HOLT, AND M. A. LEIBOLD (EDS.). 2005. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, Illinois.
- HOULAHAN, J. E., ET AL. 2007. Compensatory dynamics are rare in natural communities. Proceedings of the National Academy of Sciences 104:3273–3277.
- HUERTA-MARTINEZ, F. M., J. A. VAZQUEZ-GARCIA, E. GARCIA-MOYA, L. LOPEZ-MATA, AND H. VAQUERA-HUERTA. 2004. Vegetation ordination at the southern Chihuahuan Desert (San Luis Potosi, Mexico). Plant Ecology 174:79–87.
- JACKSON, D. A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214.
- JONGMAN, R. H. G., C. J. F. TER BRAAK, AND O. F. R. VAN TONGEREN. 1995. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, United Kingdom.
- JORGENSEN, E. E., AND S. DEMARAIS. 1999. Spatial scale dependence of rodent habitat use. Journal of Mammalogy 80:421–429.
- KELT, D. A., ET AL. 1996. Community structure of desert small mammals: comparisons across four continents. Ecology 77:746–761.
- KENAGY, G. J. 1973. Daily and seasonal patterns of activity and energetics in a heteromyid rodent community. Ecology 54: 1201–1219.
- KENAGY, G. J., AND G. A. BARTHOLOMEW. 1985. Seasonal reproductive patterns in five coexisting California rodent species. Ecological Monographs 55:371–397.
- KOTLER, B. 1984. Risk of predation and the structure of desert rodent communities. Ecology 65:689–701.
- KRASNOV, B., G. SHENBROT, I. KHOKHLOVA, AND E. IVANITSKAYA. 1996. Spatial patterns of rodent communities in the Ramon erosion cirque, Negev Highlands, Isreal. Journal of Arid Environments 32:319–327.
- KRUPA, J. J., AND K. N. GELUSO. 2000. Matching the color of excavated soil: cryptic coloration in the plains pocket gopher (*Geomys bursarius*). Journal of Mammalogy 81:86–96.
- LANDE, R. 1996. Statistics and partitioning of species diversity and similarity among multiple communities. Oikos 76:5–13.
- LEGENDRE, P., AND L. LEGENDRE. 1998. Numerical ecology. 2nd ed. Elsevier Press, Amsterdam, The Netherlands.
- LEIBOLD, M. A., AND T. E. MILLER. 2004. From metapopulations to metacommunities. Pp. 133–150 in Ecology, genetics, and evolution of metacommunities (I. A. Hanski and O. E. Gaggioti, eds.). Elsevier Press, Amsterdam, The Netherlands.
- LEIBOLD, M. A., ET AL. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

- LUNA, F., C. D. ANTINUCHI, AND C. BUSCH. 2002. Digging energetics in the South American rodent *Ctenomys talarum* (Rodentia, Ctenomyidae). Canadian Journal of Zoology 80:2144–2149.
- MACMAHON, J. A. 1979. North American deserts: their floral and faunal components. Pp. 21–82 in Arid land ecosystems (D. W. Goodall, R. A. Perry, and K. M. W. Howes, eds.). Vol. 1. Cambridge University Press, Cambridge, United Kingdom.
- MCAULIFFE, J. R., AND E. V. MCDONALD. 1995. A Piedmont landscape in the eastern Mojave Desert: examples of linkages between biotic and physical components. San Bernardino County Museum Association Quarterly 42:53–63.
- M'CLOSKEY, R. T. 1981. Microhabitat use in coexisting desert rodents: the role of population density. Oecologia 50:310–315.
- MORRIS, D. W. 1984. Patterns and scale of habitat use in two temperate zone small mammal faunas. Canadian Journal of Zoology 62:1540–1547.
- MORRIS, D. W. 1987. Ecological scale and habitat use. Ecology 68:362–369.
- OLSON, D. M., ET AL. 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51:933–938.
- PARMENTER, R. R., AND J. A. MACMAHON. 1983. Factors determining the abundance and distribution of rodents in a shrub-steppe ecosystem—the role of shrubs. Oecologia 59:145–156.
- PATTERSON, B. D., AND J. H. BROWN. 1991. Regionally nested patterns of species composition in granivorous rodent assemblages. Journal of Biogeography 18:395–402.
- PATTERSON, B. D., ET AL. 2005. Digital distribution maps of the mammals of the Western Hemisphere, version 2.0. NatureServe, Arlington, Virginia.
- PERES-NETO, P. R., P. LEGENDRE, S. DRAY, AND D. BORCARD. 2006. Variation partitioning of species data matrices and comparison of fractions. Ecology 87:2614–2625.
- POLIS, G. A. 1991. Desert communities: an overview of patterns and processes. Pp. 1–26 in The ecology of desert communities (G. A. Polis, ed.). University of Arizona Press, Tucson.
- PRICE, M. V. 1978. Role of microhabitat in structuring desert rodent communities. Ecology 59:910–921.
- PRICE, M. V., N. M. WASER, AND T. A. BASS. 1984. Effects of moonlight on microhabitat use by desert rodents. Journal of Mammalogy 65:353–356.
- PRICE, M. V., N. M. WASER, AND S. A. MCDONALD. 2000. Elevational distribution of kangaroo rats (genus *Dipodomys*): long-term trends at a Mojave Desert site. American Midland Naturalist 144:352–361.
- REICHMAN, O. J., AND D. OBERSTEIN. 1977. Selection of seed distribution types by *Dipodomys merriami* and *Perognathus amplus*. Ecology 58:636–643.
- REICHMAN, O. J., AND M. V. PRICE. 1993. Ecological aspects of heteromyid foraging. Pp. 539–574 in Biology of the Heteromyidae (H. H. Genoways and J. H. Brown, eds.). Special Publication 10, The American Society of Mammalogists.
- ROGOVIN, K. A., G. I. SHENBROT, A. V. SUROV, AND M. IDRIS. 1994. Spatial organization of a rodent community in the western Raasthan Desert (India). Mammalia 58:243–260.
- ROMANACH, S. S., E. W. SEABLOOM, O. J. REICHMAN, W. E. ROGERS, AND G. N. CAMERON. 2005. Effects of species, sex, age, and habitat on geometry of pocket gopher foraging tunnels. Journal of Mammalogy 86:750–756.
- ROOT, J. J., E. E. JORGENSEN, AND S. DEMARAIS. 2000. Soil texture uses by sympatric rats on the White Sands dune complex. Journal of Mammalogy 45:533–535.
- ROSENZWEIG, M. L. 1991. Habitat selection and population interactions: the search for mechanism. American Naturalist 137:S5–S28.

- Rosenzweig, M. L., and J. WINAKUR. 1969. Population ecology of desert rodent communities: habitats and environmental complexity. Ecology 50:558–572.
- RUFFNER, J. A. 1978. Climates of the states: National Oceanic and Atmospheric Administration narrative summaries, tables and maps for each state with overview of state climatologist programs. National Oceanic and Atmospheric Administration, Detroit, Michigan.
- SCOTT, D. M., AND N. DUNSTONE. 2000. Environmental determinants of the composition of desert-living rodent communities in the northeast Badia region of Jordan. Journal of Zoology (London) 251:481– 494.
- SHENBROT, G. I. 1992. Spatial structure and niche patterns of a rodent community in the south Bukhara Desert (Middle Asia). Ecography 15:347–357.
- SHENBROT, G. I., AND K. A. ROGOVIN. 1995. Temporal variation in spatial organization of a rodent community in the southwestern Kyzylkum Desert (Middle Asia). Ecography 18:370–383.
- SOKAL, R. R., AND F. J. ROHLF. 1995. Biometry. 3rd ed. W. H. Freeman and Company, New York.
- STEVENS, R. D., AND M. R. WILLIG. 2000. Community structure, abundance, and morphology. Oikos 88:48–56.

- TELLO, J. S., R. D. STEVENS, AND C. W. DICK. 2008. Patterns of species occurrence and density compensation: a test for interspecific competition in bat ectoparasite infracommunities. Oikos 117: 693–702.
- WARD, D., L. OLSVIGWHITTAKER, AND M. LAWES. 1993. Vegetation– environment relationships in a Negev Desert erosion cirque. Journal of Vegetation Science 4:83–94.
- WASSERBERG, G., Z. ABRAMSKY, N. VALDIVIA, AND B. KOTLER. 2005. The role of vegetation characteristics and foraging substrate in organizing a centrifugal gerbil community. Journal of Mammalogy 86:1009–1014.
- WHITFORD, W. G. 2002. Ecology of desert systems. Academic Press, San Diego, California.
- YOUNG, M. H., E. V. MCDONALD, T. G. CLADWELL, S. G. BENNER, AND D. G. MEADOWS. 2004. Hydraulic properties of desert soil chronosequence in the Mojave Desert, USA. Vadose Zone Journal 3:956–963.

Submitted 1 June 2008. Accepted 26 August 2008.

Associate Editor was John L. Koprowski.

APPENDIX I

Significant relationships among environmental variables (plants and soil particle size) and rodent species abundances. Pearson product-moment correlation coefficients describe degree of association between a particular rodent species' relative abundance and microhabitat characteristics (2 right columns). Stepwise multiple regression is based on microhabitat variables that were significantly correlated with rodent relative abundances (middle 3 columns). Variables in bold accounted for a significant amount of unique variation in a particular principal component (PC) and loaded into the stepwise multiple regression.

		Regression	Pearson correlation		
Species/environmental variable	Adjusted R^2	<i>P</i> -value	Standardized β	r	<i>P</i> -value
Chaetodipus formosus	0.671	< 0.001			
Eriogonum inflatum			0.559	0.710	<0.001
Ambrosia dumosa			0.354	0.434	0.015
6.3–12.5 mm			0.290	0.528	0.002
50-120 mm				0.653	< 0.001
25-50 mm				0.646	< 0.001
12.5–25 mm				0.588	< 0.001
<1.4 mm				-0.496	0.005
Atriplex hymenelytra				0.460	0.009
Encelia farinosa				0.460	0.009
Opuntia basilaris				0.407	0.023
Ericameria cooperi				-0.395	0.028
Ephedra cf. trifurca				0.391	0.030
Chaetodipus penicillatus	0.639	< 0.001			
Argemone munita			0.605	0.745	0.000
1.4–3.18 mm			-0.357	-0.594	0.000
Machaeranthera canescens				0.625	0.000
3.18-4.75 mm				-0.547	0.001
<1.4 mm				0.532	0.002
Stephanomeria				0.509	0.003
4.75-6.3 mm				-0.441	0.013
Dipodomys deserti	0.988	< 0.001			
Petalonyx thurberi			-0.404	0.678	< 0.001
Machaeranthera canescens			1.235	0.964	<0.001
1.4–3.18 mm			-0.057	-0.596	<0.001
<1.4 mm			0.064	0.610	< 0.001
Stephanomeria				0.733	< 0.001
Argemone munita				0.701	< 0.001
3.18-4.75 mm				-0.546	0.001
4.75–6.3 mm				-0.492	0.005
6.3–12.5 mm				-0.433	0.015
Dipodomys merriami	0.754	< 0.001			
<1.4 mm			0.451	0.593	< 0.001
Larrea tridentata			0.537	0.697	<0.001
Opuntia acanthocarpa			-0.228	-0.603	<0.001
Ephedra nevadensis				-0.619	< 0.001
Echinocereus engelmannii				-0.651	< 0.001
Eriogonum fasciculatum				-0.654	< 0.001
Ericameria linearifolia				-0.572	0.001
Opuntia erinacea				-0.555	0.001
Prunus fasciculate				-0.533	0.002
Ambrosia dumosa				0.532	0.002
4.75–6.3 mm				-0.531	0.002
Menodora spinescens				-0.527	0.002
Yucca baccata				-0.525	0.002
Gutierrezia microcephala				-0.520	0.003
Opuntia chlorotica				-0.508	0.004
Yucca brevifolia				-0.506	0.004
Salvia dorrii				-0.493	0.005
6.3–12.5 mm				-0.490	0.005
3.18-4.75 mm				-0.482	0.006
Opuntia phaeacantha				-0.454	0.010
Thamnosma montana				-0.438	0.014
Juniperus osteosperma				-0.437	0.014
Purshia tridentata				-0.433	0.015

APPENDIX I.—Continued.

		Regression	Regression Pearson correl:		
Species/environmental variable	Adjusted R^2	<i>P</i> -value	Standardized B	r	<i>P</i> -value
Opuntia basilaris				-0.408	0.023
Fallugia paradoxa				-0.401	0.025
Pinus monophylla				-0.400	0.026
Salazaria mexicana				-0.390	0.030
>120 mm				-0.386	0.032
50–120 mm				-0.378	0.036
Verbena gooddingii				-0.377	0.037
Rhus trilobata				-0.377	0.037
Artemisia ludoviciana				-0.377	0.037
Pellaea mucronata				-0.377	0.037
Quercus turbinetta Pacohavia sovailoidas				-0.377	0.037
Colooping removing				-0.374	0.038
	0.745	<0.001		-0.372	0.039
Chaotonanna ericoides	0.745	< 0.001	0.494	0 306	0.027
Tetradymia stenolenis			0.494	0.530	0.027
Fnhedra nevadensis			0.392	0.580	0.002
Hymenoclea salsola			0.260	0.527	0.002
Fricameria cooperi			0.200	0.568	0.001
1.4-3.18 mm				0.538	0.002
Larrea tridentata				-0.468	0.008
Eriogonum fasciculatum				0.442	0.013
25–50 mm				-0.399	0.026
Artemisia tridentata				0.396	0.027
Thamnosma montana				0.375	0.037
Ambrosia dumosa				-0.374	0.038
Neotoma lepida	0.723	0.001			
Opuntia basilaris			0.414	0.530	0.002
Physalis hederifolia			0.319	0.380	0.035
Salazaria mexicana			0.349	0.647	0.000
Ephedra nevadensis			0.305	0.633	0.000
Opuntia acanthocarpa				0.588	0.001
Yucca brevifolia				0.553	0.001
3.18-4.75 mm				0.535	0.002
Yucca shidigera				0.509	0.003
4.75–6.3 mm				0.453	0.011
Lycium andersonii				0.450	0.011
Echinocereus engelmannii				0.444	0.012
<1.4 mm				-0.433	0.015
Menodora spinescens				0.428	0.016
Ericameria cooperi				0.420	0.017
1.4-5.18 IIIII Encolia vincinancia				0.424	0.018
Opuntia achinocarpa				0.415	0.021
Ferocactus cylindraceus				0.368	0.042
Onvchomys torridus	0.499	< 0.001			
Krascheninnikovia lanata			0.538	0.504	0.004
Tetradymia stenolepis			0.400	0.365	0.043
Purshia tridentata			-0.320	-0.410	0.022
Adenophyllum cooperi				0.453	0.011
>120 mm				-0.404	0.024
Senecio flaccidus				0.400	0.026
12.5–25 mm				-0.383	0.033
25-50 mm				-0.381	0.034
Opuntia chlorotica				-0.378	0.036
Perognathus longimembris	0.399	0.001			
Mirabilis multiflora			0.419	0.398	0.026
Datura wrightii			0.388	0.421	0.018
Eriogonum fasciculatum			-0.338	-0.382	0.034
Unknown sp. 2				0.398	0.026

APPENDIX I.—Continued.

Species/environmental variable Adjust ft ² P-value Sundardized β r P-value Permeyros crisius 0.968 <0.001 -4.289 6.591 <0.001 Epidem dc niftera 4.749 0.685 <0.001 0.124 0.481 <0.001 Eriognami tifiliam 0.124 0.741 <0.001 0.012 0.691 <0.001 Doratid balantiro 0.124 0.741 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001			Regression		Pearson correlation		
Permaynas cristis 0.968 <0.001	Species/environmental variable	Adjusted R^2	<i>P</i> -value	Standardized B	r	P-value	
Arigin conferifian -1.29 0.59 0.000 Sphare conferifian 0.142 0.485 <0.000	Peromyscus crinitus	0.968	< 0.001				
Fpinearies ambigu 4.739 0.858 <0.001	Atriplex confertifolia			-4.289	0.591	<0.001	
splannikan 0.132 0.81 <0.001	Ephedra cf. trifurca			4.749	0.685	< 0.001	
Drogonum inflatum 0.126 0.764 <0.001 Arriplex hymenelym 0.741 <0.001	Sphaeralcea ambigua			0.142	0.481	< 0.001	
Openation basilaris 0.724 0.730 <0.001 Arriplex Synames/bra 0.741 <0.001	Eriogonum inflatum			0.126	0.764	<0.001	
Arajak spannelyra 0.741 <0.001	Opuntia basilaris			0.124	0.730	<0.001	
Exects jathiosa 0.741 <0.001	Atriplex hymenelytra				0.741	< 0.001	
>1.20 mm 0.650 <0.001	Encelia farinosa				0.741	< 0.001	
50-120 mm 0.622 <0.001	>120 mm				0.660	< 0.001	
Protechamms fremomit 0.591 <0.091	50-120 mm				0.622	< 0.001	
25-50 mm 0.422 0.018 <1.4-3.18 mm	Psorothamnus fremontii				0.591	< 0.001	
12.5.2 mm 0.422 0.018 <	25–50 mm				0.441	0.013	
<1.4 mm	12.5–25 mm				0.422	0.018	
1.4-3.18 mm -0.56 0.049 Peromyscus eremicus 0.625 <0.01	<1.4 mm				-0.389	0.031	
Peromyscas creations 0.625 <0.01 Hymenoclos salada 0.397 0.539 0.009 Mondora sciparia 0.313 0.459 0.009 Mondora sciparia 0.313 0.459 0.009 Mondora sciparia 0.346 0.001 1.000 Yacca brevifolia 0.526 0.002 Encelia virginensis 0.510 0.003 Ferocents cyliaharceus 0.459 0.009 0.0459 0.009 Unknown sp. 3 0.459 0.009 0.0459 0.009 Unknown sp. 3 0.459 0.009 0.003 0.0459 0.009 Unknown sp. 4 0.459 0.009 0.003 0.0459 0.009 Viguera parishi 0.459 0.009 0.003 0.013 0.0459 0.009 Viguera parishi 0.459 0.009 0.003 0.032 0.013 Spharerideca antigua 0.437 0.014 0.021 0.013 Spharerideca antigua 0.438 0.016 0.021 0.021 <td>1.4-3.18 mm</td> <td></td> <td></td> <td></td> <td>-0.356</td> <td>0.049</td>	1.4-3.18 mm				-0.356	0.049	
Hymenocla sakola 0.408 0.377 0.622 0.0035 Ericogoumi indifatum 0.313 0.459 0.009 Quunta basitaris 0.260 0.556 0.001 Yucca brevifelia 0.510 0.0035 Menodora separcens 0.510 0.003 Ferecactus cylindraceus 0.459 0.009 Encidia virginensis 0.459 0.009 Encidia virginensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.453 0.009 Mirabilis punila 0.453 0.009 Virgiterie parishif 0.453 0.010 Lakawn sp. 4 0.433 0.013 Spharerides ambigua 0.437 0.014 Spharerides ambigua 0.437 0.014 Lycium andersonii 0.412 0.021 Spharerides ambigua 0.410 0.022 Outrit acanthocarpa 0.319 0.404 Daileya mithiaredina 0.321 0.0455 Daileya mithiaredi	Peromyscus eremicus	0.625	< 0.001				
Ericogonum inflatum 0.37 0.529 0.002 Menadora seporia 0.313 0.459 0.009 Opunita basilaris 0.564 0.001 Menadora sepinescens 0.536 0.002 Encelia virginescens 0.510 0.003 Erocatur cylindraceus 0.489 0.009 Salvia mohavensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Wirchilis punila 0.459 0.009 Vigiare parishii 0.459 0.009 Unknown sp. 3 0.459 0.009 Vigiare parishii 0.454 0.010 Clats rigidus 0.454 0.010 Vacca haccata 0.439 0.013 Sphearalcea ambigua 0.419 0.019 Gaiterrezia microscephala 0.411 0.022 Baileya mitriadita 0.412 0.021 Opunia acanbacerpa 0.380 0.033 Salataria mexicana 0.380 0.035	Hymenoclea salsola			0.408	0.379	0.035	
Menodora separia 0.313 0.459 0.001 Yunca breifolia 0.260 0.559 0.001 Menodora spinseens 0.516 0.003 Encelia virginensis 0.510 0.003 Ferocactus cylindraecus 0.489 0.009 Salvia nohsvensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Mirabilis punila 0.459 0.009 Virginer parishi 0.459 0.009 Virginer parishi 0.459 0.001 Lona rigidus 0.459 0.001 Virginer parishi 0.453 0.010 Lona rigidus 0.454 0.010 Spharalcea ambigua 0.437 0.011 Lycium andresoni 0.428 0.016 Echinocerva 0.383 0.033 Didaterezia mathocara 0.381 0.032 Salvararia mexicana 0.381 0.035 12.5-25 mm 0.380 0.035	Eriogonum inflatum			0.397	0.529	0.002	
Opunita basilaris 0.260 0.559 0.001 Muca brevifolia 0.516 0.000 Encelia virginescas 0.510 0.003 Erocatu cyludracus 0.488 0.0005 Salvia mohavensis 0.489 0.0009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Mirabilis punila 0.459 0.009 Viguera parishi 0.459 0.000 Lotus rigidus 0.454 0.010 Lotus rigidus 0.454 0.010 Sphaeralcea ambigua 0.443 0.013 Sphaeralcea ambigua 0.4416 0.020 Sphaeralcea ambigua 0.416 0.022 Salauria mericana 0.383 0.035 Chinocereus triglochidaus 0.383 0.035 12.5-25 mm 0.324 0.499 0.000 Aleron triglochidaus 0.254 0.477 <<0.001	Menodora scoparia			0.313	0.459	0.009	
Yucca bereifolia 0.546 0.001 Menodora spinsecens 0.526 0.002 Encelia virginensis 0.498 0.005 Salvia moharensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Mirabilis punila 0.459 0.009 Virgiera parishi 0.455 0.010 Lotta rigidas 0.454 0.010 Virgiera parishi 0.453 0.013 Yacca baccata 0.437 0.014 Sphaeralcea ambigua 0.437 0.014 Lycium andersonii 0.428 0.016 Ephedra nevadensis 0.416 0.020 Gutterezia andmocarpa 0.410 0.022 Salazaria mexicana 0.333 0.033 Peronyscus mainiculatus 0.745<<<0.001	Opuntia basilaris			0.260	0.559	0.001	
Menadora spinescens 0.526 0.002 Encelia virginensis 0.510 0.003 Forecactus cylindraceus 0.489 0.009 Sahria mohavenis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Mirabilis pumila 0.459 0.009 Vigiara parishii 0.459 0.009 Ichus rigidus 0.455 0.010 Sphaeralcea ambigua 0.439 0.013 Sphaeralcea ambigua 0.439 0.013 Sphaeralcea ambigua 0.437 0.014 Lycium andersonii 0.419 0.019 Guiarezia microcephala 0.416 0.029 Baileya multiradiatus 0.343 0.033 Uputia acanthocarpa 0.310 0.032 Salazaria mexicana 0.338 0.033 Echnocereas triglochidiatus 0.349 0.046 Poromyscus maniculatus 0.745<<<0.001	Yucca brevifolia				0.546	0.001	
Encelia virginensis 0.510 0.003 Ferocactus Cyllndraceus 0.459 0.009 Salvia mohavensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Mirabilis punila 0.459 0.009 Viguiera parishi 0.459 0.001 Lotax rigidus 0.451 0.010 -0.443 0.013 Sphaeralcea ambigua 0.437 0.014 Lycium andersonii 0.428 0.016 Ephedra nevadensis 0.416 0.020 Guiterezia microcephala 0.410 0.022 Opunia acanihocarpa 0.380 0.353 Salazaria mexicana 0.380 0.352 Peronyscus maniculatus 0.745<<<0.001	Menodora spinescens				0.526	0.002	
Fereocctus cylindraeus 0.488 0.005 Salvia mohuvensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Unknown sp. 4 0.459 0.009 Wirabilis pumila 0.459 0.009 Wirabilis pumila 0.451 0.010 clars rigidus 0.453 0.010 <1.4 mm	Encelia virginensis				0.510	0.003	
Salvia mohavensis 0.459 0.009 Unknown sp. 3 0.459 0.009 Mirabilis pumila 0.459 0.009 Viguiera parishi 0.453 0.001 Lotts rigidus 0.454 0.010 0.454 0.010 0.454 0.010 0.439 0.013 Sphaeraleca ambigua 0.437 0.014 Lycium andersonii 0.428 0.016 Ephedra nevadensis 0.416 0.020 Guiterrezia microcephala 0.416 0.020 Baleya multiradiata 0.412 0.021 Opuntia acanthocarpa 0.340 0.035 Salararia mexicana 0.380 0.035 12.5-25 mm 0.380 0.0362 0.045 Peromyscus maniculatus 0.745<<<0.001	Ferocactus cylindraceus				0.488	0.005	
Unknown sp. 4 0.459 0.009 Mirabilis punila 0.459 0.009 Mirabilis punila 0.455 0.010 Lotus rigidas 0.454 0.010 <1.4 mm	Salvia mohavensis				0.459	0.009	
Unknown sp. 4 0.459 0.009 Wiradhis punila 0.459 0.009 Viguiera parishi 0.455 0.010 Lous rigidus 0.453 0.013 Sphaeralcea ambigua 0.439 0.013 Sphaeralcea ambigua 0.437 0.014 Lycium andersonii 0.437 0.016 Ephedra nevadensis 0.419 0.020 Guiterrezia microcephala 0.410 0.022 Salazzin mexicana 0.383 0.033 Echinocereus triglochidiatus 0.745<<0.001	Unknown sp. 3				0.459	0.009	
Mirabilis pamila 0.459 0.009 Viguiera parishii 0.455 0.010 Lotus rigidus 0.454 0.010 <1.4 mm	Unknown sp. 4				0.459	0.009	
Viguera parishi 0.455 0.010 Lotus rigidus 0.454 0.010 -0.443 0.013 Yucca baccata 0.439 0.013 Sphaeraloca ambigua 0.439 0.014 Lycium andersonii 0.428 0.016 Ephedra nevadensis 0.419 0.019 Guiterrezia microcephala 0.416 0.0202 Baileya multiradiata 0.412 0.021 Opuntia acanthocarpa 0.380 0.033 Salazaria mexicana 0.383 0.033 Peromyscis maniculatus 0.745 <0.001	Mirabilis pumila				0.459	0.009	
Lotus rigidus 0.454 0.013 '1.4 mm -0.443 0.013 Yucca baccata 0.439 0.013 Sphaeralcea ambigua 0.437 0.014 Lycium andersonii 0.437 0.019 Guierrezia microcephala 0.416 0.020 Baileya multiraliota 0.416 0.022 Opuntia acanthocarpa 0.383 0.033 Echinocereus triglochidiaus 0.383 0.035 12.5 - 25 mm 0.362 0.045 Peromyscus maniculatus 0.745<<0.001	Viguiera parishii				0.455	0.010	
<1.4 mm	Lotus rigidus				0.454	0.010	
Yucca baccata 0.439 0.013 Sphaeralcea ambigua 0.437 0.014 Lyciun andersonii 0.428 0.016 Ephedra nevadensis 0.419 0.020 Gutierrezia microcephala 0.416 0.020 Baileya multiradiata 0.412 0.021 Opuntia acanthocarpa 0.410 0.022 Salzaria mexicana 0.383 0.033 Echinocereus triglochidiatus 0.745 <0.001	<1.4 mm				-0.443	0.013	
Sphaeralcea ambigua 0.437 0.014 Lycium andersonii 0.428 0.016 Ephedra nevadensis 0.416 0.020 Baileya muliradiata 0.412 0.021 Opuntia acanthocarpa 0.410 0.022 Salazaria mexicana 0.383 0.033 Echinocereus triglochidiatus 0.345 0.380 0.035 12.5 - 25 mm 0.362 0.046 0.047 Peromyscus maniculatus 0.745 <0.001	Yucca baccata				0.439	0.013	
Lycium andersonii 0.428 0.016 Ephedra nevadensis 0.419 0.019 Guiterrezia microcephala 0.416 0.020 Baileya multiradiata 0.410 0.022 Opunita acanthocarpa 0.383 0.033 Salazaria mexicana 0.383 0.035 2.5-25 mm 0.745 0.001 Ephedra nevadensis 0.745 0.001 Adenophyllum cooperi 0.319 0.480 0.006 Mean annuals 0.254 0.479 0.006 Mean annuals 0.222 0.490 0.005 3.18-4.75 mm 0.584 0.479 0.006 Lerrea tridentata -0.566 0.001 -0.566 0.001 Larea tridentata -0.566 0.001 -0.564 0.002 0.022 0.002 0.035 Salazaria mexicana 0.541 0.002 0.543 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Sphaeralcea ambigua				0.437	0.014	
Ephedra nevadensis 0.419 0.019 Gutierrezia microcephala 0.416 0.020 Baileya multiradiata 0.412 0.021 Opunita acanthocarpa 0.410 0.022 Salazaria mexicana 0.383 0.033 12.5-25 mm 0.362 0.045 Peromyscus maniculatus 0.745 <0.001	Lycium andersonii				0.428	0.016	
Guiterrezia microcephala 0.416 0.020 Baileya multiradiata 0.412 0.021 Opuntia acanthocarpa 0.310 0.022 Salazaria mexicana 0.383 0.033 Echinocereus triglochidiatus 0.745 0.001 Peronyscus maniculatus 0.745 <0.001	Ephedra nevadensis				0.419	0.019	
Baileya multiradiata 0.412 0.021 Opuntia acanthocarpa 0.410 0.022 Salazaria mexicana 0.383 0.033 Echinocereus triglochidiatus 0.380 0.035 12.5–25 mm 0.362 0.045 Peromyscus maniculatus 0.745 <0.001	Gutierrezia microcephala				0.416	0.020	
Opuntia acanthocarpa 0.410 0.022 Salazaria mexicana 0.383 0.033 Echinocereus triglochidiatus 0.380 0.035 12.5–25 mm 0.362 0.001 Peromyscus maniculatus 0.745 <0.001	Baileya multiradiata				0.412	0.021	
Salazaria mexicana 0.383 0.033 Echinocereus triglochidiatus 0.380 0.035 12.5-25 mm 0.362 0.045 Peromyscus maniculatus 0.745 <0.001	Opuntia acanthocarpa				0.410	0.022	
Echnocereus triglochidiatus 0.380 0.035 12.5-25 mm 0.362 0.045 Peromyscus maniculatus 0.745 <0.001	Salazaria mexicana				0.383	0.033	
12.5–25 mm 0.362 0.045 Peromyscus maniculatus 0.745 <0.001	Echinocereus triglochidiatus				0.380	0.035	
Peromyscus maniculatus 0.745 <0.001 Ephedra nevadensis 0.544 0.727 <0.001 Adenophyllum cooperi 0.319 0.480 0.006 Mean annuals 0.254 0.479 0.005 S.18-4.75 mm 0.222 0.490 0.005 Larrea tridentata -0.566 0.001 Vicca brevifolia 0.543 0.002 Salazaria mexicana 0.542 0.002 0.002 0.543 0.002 Armosia dumosa -0.566 0.001 Vicca brevifolia 0.526 0.002 I.4-3.18 mm 0.526 0.002 0.003 Guiterrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 0.441 0.012 Vicca baccata 0.447 0.012 Vucca baccata 0.442 0.013 0.442 0.013 Vicca baccata 0.402 0.025 Outniti acambocarpa 0.402 0.025 0.035 0.035 0.035 0.035	12.5–25 mm				0.362	0.045	
Ephedra nevadensis 0.544 0.727 <0.001 Adenophyllum cooperi 0.319 0.480 0.006 Mean annuals 0.254 0.479 0.006 Eriogonum fasciculatum 0.588 0.001 J.18–4.75 mm 0.588 0.001 Larrea tridentata -0.566 0.001 Yucca brevifolia 0.543 0.002 Salazaria mexicana 0.542 0.002 Ambrosia dumosa -0.541 0.002 1.4–3.18 mm 0.526 0.002 Hymenoclea salsola 0.515 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.447 0.011 4.75–6.3 mm 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.402 0.025 Opuntia acanthoccarpa 0.4385 0.032	Peromyscus maniculatus	0.745	< 0.001				
Adenophyllum cooperi 0.319 0.480 0.006 Mean annuals 0.254 0.479 0.006 Eriogonum fasciculatum 0.222 0.490 0.005 3.18–4.75 mm 0.588 0.001 Larrea tridentata -0.566 0.001 Yucca brevifolia 0.543 0.002 Salazaria mexicana 0.542 0.002 Ambrosia dumosa -0.541 0.002 1.4–3.18 mm 0.526 0.002 Hymenoclea salsola 0.515 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thannosma montana 0.447 0.011 4.75–6.3 mm 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.402 0.025 Opunta acanthocarpa 0.312 0.032	Ephedra nevadensis			0.544	0.727	< 0.001	
Mean annuals 0.254 0.479 0.006 Eriogonum fasciculatum 0.222 0.490 0.005 3.18-4.75 mm 0.588 0.001 Larrea tridentata -0.566 0.001 Yucca brevifolia 0.542 0.002 Salazaria mexicana 0.542 0.002 Ambrosia dumosa -0.541 0.002 1.4-3.18 mm 0.526 0.002 Hymenoclea salsola 0.515 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.441 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.4002 0.025 Mirabilis multiflora 0.402 0.025 Opuntia acanthocarpa 0.435 0.003	Adenophyllum cooperi			0.319	0.480	0.006	
Eriogonum fasciculatum0.2220.4900.0053.18-4.75 mm0.5880.001Larrea tridentata-0.5660.001Yucca brevifolia0.5430.002Salazaria mexicana0.5420.002Ambrosia dumosa-0.5410.0021.4-3.18 mm0.5260.002Hymenoclea salsola0.5150.003Gutierrezia microcephala0.5150.003Ericameria cooperi0.4610.009Thamnosma montana0.4470.012Yucca baccata0.4470.013Unknown sp. 20.4020.025Mirabilis multiflora0.4020.025Opuntia acanthocarpa0.4350.032	Mean annuals			0.254	0.479	0.006	
3.18-4.75 mm 0.388 0.001 Larrea tridentata -0.566 0.001 Yucca brevifolia 0.543 0.002 Salazaria mexicana 0.542 0.002 Ambrosia dumosa -0.541 0.002 1.4-3.18 mm 0.526 0.002 Hymenoclea salsola 0.515 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.447 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.402 0.025 Mirabilis multiflora 0.402 0.025 Oruntia acanthocarpa 0.385 0.032	Eriogonum fasciculatum			0.222	0.490	0.005	
Larrea tridentata -0.566 0.001 Yucca brevifolia 0.543 0.002 Salazaria mexicana 0.542 0.002 Ambrosia dumosa -0.541 0.002 1.4-3.18 mm 0.526 0.002 Hymenoclea salsola 0.515 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.402 0.025 Mirabilis multiflora 0.402 0.025 Oruntia acanthocarpa 0.385 0.032	3.18–4./5 mm				0.588	0.001	
Fucca brevifolia 0.543 0.002 Salazaria mexicana 0.542 0.002 Ambrosia dumosa -0.541 0.002 1.4-3.18 mm 0.526 0.002 Hymenoclea salsola 0.520 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.4451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.4402 0.025 Mirabilis multiflora 0.402 0.025 Orpuntia acanthocarpa 0.385 0.032	Larrea tridentata				-0.566	0.001	
Salazaria mexicana 0.342 0.002 Ambrosia dumosa -0.541 0.002 1.4-3.18 mm 0.526 0.002 Hymenoclea salsola 0.520 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.385 0.032	Yucca brevifolia				0.543	0.002	
Ambrosia dumosa -0.341 0.002 1.4-3.18 mm 0.526 0.002 Hymenoclea salsola 0.520 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.385 0.032	Salazaria mexicana				0.542	0.002	
1.4-5.18 mm 0.526 0.002 Hymenoclea salsola 0.520 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.385 0.032	Ambrosia dumosa				-0.541	0.002	
Tymenocica saisola 0.520 0.003 Gutierrezia microcephala 0.515 0.003 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.385 0.032	1.4-3.10 IIIII				0.520	0.002	
Guileriezia microceptata 0.313 0.005 Ericameria cooperi 0.461 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.442 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.385 0.032	Gutiamazia miana combala				0.520	0.003	
Entamena coopert 0.401 0.009 Thamnosma montana 0.451 0.011 4.75-6.3 mm 0.447 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.385 0.032	Evicamaria cooperi				0.313	0.003	
4.75-6.3 mm 0.427 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.402 0.025 Opuntia acanthocarpa 0.385 0.032	Thamnosma montana				0.401	0.009	
Yucca baccata 0.442 0.012 Yucca baccata 0.442 0.013 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.402 0.025 Opuntia acanthocarpa 0.385 0.032	4 75-6 3 mm				0.47	0.011	
Inter backan 0.442 0.015 Unknown sp. 2 0.402 0.025 Mirabilis multiflora 0.402 0.025 Opuntia acanthocarpa 0.385 0.032	Yucca haccata				0.442	0.012	
Mirabilis multiflora 0.402 0.025 Opuntia acanthocarpa 0.385 0.032	Unknown sp 2				0.402	0.015	
Opuntia acanthocarpa 0.385 0.02	Mirabilis multiflora				0.402	0.025	
	Opuntia acanthocarpa				0.385	0.032	

APPENDIX I.—Continued.

		Regression		Pearson correlation		
Species/environmental variable	Adjusted R^2	<i>P</i> -value	Standardized B	r	<i>P</i> -value	
Lycium andersonii				0.373	0.039	
Coleogyne ramosissima				0.371	0.040	
Senecio flaccidus				0.356	0.049	
Peromyscus truei	0.899	< 0.001				
Salvia dorrii			0.626	0.886	<0.001	
Echinocereus engelmannii			0.218	0.430	0.016	
Juniperus osteosperma			0.234	0.736	0.000	
Opuntia phaeacantha			0.170	0.541	0.002	
Purshia tridentata				0.824	0.000	
Opuntia erinacea				0.745	0.000	
Ephedra viridis				0.665	0.000	
Ericameria linearifolia				0.659	0.000	
Fallugia paradoxa				0.637	0.000	
Yucca baccata				0.620	0.000	
Opuntia chlorotica				0.592	0.000	
Pinus monophylla				0.562	0.001	
Gutierrezia microcephala				0.553	0.001	
Quercus turbinella				0.552	0.001	
Artemisia ludoviciana				0.552	0.001	
Verbena gooddingii				0.552	0.001	
Rhus trilobata				0.552	0.001	
Pellaea mucronata				0.552	0.001	
>120 mm				0.500	0.004	
Prunus fasciculata				0.483	0.006	
<1.4 mm				-0.466	0.008	
Eriogonum fasciculatum				0.443	0.013	
Menodora spinescens				0.442	0.013	
Larrea tridentata				-0.385	0.032	
Atriplex canescens				0.377	0.036	
Reithrodontomys megalotis	1.000					
Opuntia phaeacantha			0.907	0.357	0.049	
Chaetopappa ericoides			0.453	0.891	< 0.001	
Artemisia tridentata				0.891	< 0.001	
Juniperus osteosperma				0.570	0.001	
Unknown sp. 1				0.428	0.016	
Escobaria vivipara				0.423	0.018	
Opuntia erinacea				0.408	0.023	
Eriogonum fasciculatum				0.386	0.032	
Echinocereus triglochidiatus				0.362	0.046	

APPENDIX II

Relationships of perennial plant species to perennial principal components (PCs). Species listed for each PC were significantly correlated with that axis. Species in bold accounted for a significant amount of unique variation in a particular PC and loaded into the stepwise multiple regression.

		Regression	Pearson correlation		
Perennial PC/plant species	Adjusted R^2	<i>P</i> -value	Standardized β	r	<i>P</i> -value
Perennial PC1	0.995	< 0.001			
Larrea tridentata			-0.629	-0.880	< 0.001
Salvia dorrii			0.099	0.600	< 0.001
Ephedra nevadensis			0.238	0.768	< 0.001
Ericameria linearifolia			0.101	0.665	< 0.001
Yucca baccata			0.232	0.828	< 0.001
Prunus fasciculata			0.143	0.421	0.018
Ambrosia dumosa			-0.094	-0.756	<0.001
Thamnosma montana			0.055	0.450	0.001
Opuntia acanthocarpa			0.048	0.607	< 0.001
Coleogyne ramosissima				0.570	0.001
Echinocereus engelmannii				0.582	0.001
Echinocereus triglochidiatus				0.430	0.016
Eriogonum fasciculatum				0.558	0.001
Gutierrezia microcephala				0.741	< 0.001
Juniperus osteosperma				0.484	0.006
Menodora spinescens				0.596	< 0.001
Opuntia chlorotica				0.461	0.009
Opuntia erinacea				0.554	0.001
Purshia tridentata				0.461	0.009
Yucca brevifolia				0.659	< 0.001
Perennial PC2	0.954	< 0.001			
Fallugia paradoxa			0.856	0.851	<0.001
Hymenoclea salsola			-0.167	-0.396	0.027
Yucca shidigera			-0.200	-0.388	0.031
Iuniperus osteosperma			0.500	0.598	< 0.001
Salvia dorrii			-0.324	0.407	0.023
Ericameria linearifolia			-0.182	0.464	0.008
Artemisia ludoviciana				0.840	< 0.001
Baccharis sergiloides				0.557	0.001
Eriogonum fasciculatum				0.402	0.025
Opuntia chlorotica				0.481	0.006
Opuntia erinacea				0.740	< 0.001
Opuntia phaeacantha				0.806	< 0.001
Pellaea mucronata				0.840	< 0.001
Pinus monophylla				0.842	< 0.001
Prunus fasciculata				0.744	< 0.001
Purshia tridentata				0.791	< 0.001
Quercus turbinella				0.840	< 0.001
Rhus trilobata				0.840	< 0.001
Verbena gooddingii				0.840	< 0.001
Perennial PC3	0.910	< 0.001			
Ericameria cooperi			0.407	0.804	< 0.001
Salazaria mexicana			0.311	0.754	< 0.001
Yucca shidigera			0.343	0.700	< 0.001
Eriogonum fasciculatum			0.210	0.512	0.003
Acacia oreogii			0.210	0.380	0.035
Hymenoclea salsola				0.480	0.005
Krameria spp				0.456	0.010
Opuntia acanthocarpa				0.450	0.010
Opuntia parishii				0.487	0.001
Unknown sp. 5				0.487	0.005
Tetradymia stenolenis				0.663	<0.005
Yucca brevifolia				0.406	0.023
Derennial DC/	0.835	< 0.001		0.700	0.025
Artemisia tridentata	0.033	~0.001	-0.688	-0.521	0.003
Prunus fasciculata			0.557	0.501	0.004

APPENDIX II.—Continued.

		Regression		Pearson correlation		
Perennial PC/plant species	Adjusted R^2	<i>P</i> -value	Standardized B	r	<i>P</i> -value	
Echinocereus triglochidiatus			-0.262	-0.358	0.048	
Eriogonum fasciculatum			0.248	0.417	0.020	
Artemisia ludoviciana				0.686	< 0.001	
Baccharis sergiloides				0.487	0.005	
Chaetopappa ericoides ^a				-0.521	0.003	
Fallugia paradoxa				0.664	< 0.001	
Opuntia chlorotica				0.645	< 0.001	
Opuntia phaeacantha				0.481	0.006	
Pellaea mucronata				0.686	< 0.001	
Pinus monophylla				0.680	< 0.001	
Purshia tridentata				0.527	0.002	
Quercus turbinella				0.686	< 0.001	
Verbena gooddingii				0.686	< 0.001	
Rhus trilobata				0.686	< 0.001	
Perennial PC5	0.920	< 0.001				
Iuninerus osteosperma			0.622	0.620	< 0.001	
Yucca shidigera			0.395	0.418	0.019	
Atripley polycarpa			-0.314	-0 502	0.015	
Thamposma montana			0.218	0.502	< 0.004	
A cacia graggii			0.210	0.004	<0.001	
Acuciu greggii Artamisia tridantata			0.135	0.415	0.021	
Chaotonanna ariaoidan				0.466	0.008	
Datura uriahtii				0.400	0.008	
Enhadra novadancia				-0.300	0.047	
Epheara nevadensis				0.307	0.042	
Epheara viriais				0.427	0.017	
Ericameria linearifolia				0.586	0.001	
Eriogonum fasciculatum				0.421	0.018	
Opuntia acanthocarpa				0.519	0.003	
Opuntia echinocarpa				0.393	0.029	
Opuntia erinacea				0.364	0.044	
Salvia dorrii				0.388	0.031	
Perennial PC6	0.807	< 0.001				
Yucca brevifolia			0.730	0.812	<0.001	
Atriplex canescens			0.301	0.410	0.022	
Atriplex polycarpa			-0.230	-0.394	0.028	
Echinocereus triglochidiatus				0.521	0.003	
Ephedra nevadensis				0.562	0.001	
Ephedra viridis				0.516	0.003	
Gutierrezia microcephala				0.671	< 0.001	
Hymenoclea salsola				0.473	0.007	
Lycium andersonii				0.573	0.001	
Lycium cooperi				0.475	0.007	
Menodora spinescens				0.633	< 0.001	
Mirabilis multiflora				0.407	0.023	
Salazaria mexicana				0.368	0.041	
Salvia dorrii				0.613	< 0.001	
Unknown sp. 2				0.407	0.023	
Yucca baccata				0.635	< 0.001	

^a Variable not considered because of high multicolinearity.