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Appendix 1

Short description of each environmental 
hypothesis included in this study

Energy

The energy hypothesis has been mechanistically connected 
to species richness in a number of different ways (Evans et al. 
2005). The possibilities that have received the most recent at-
tention are effects of temperature on metabolism, and effects of 
energy availability on species extinctions. When thinking about 
energetic determinants of species richness, it is important to dif-
ferentiate among two types of energy: kinetic and potential (Allen 
et al. 2007). Kinetic energy refers to temperature, and it affects 
ectothermic organisms primarily by influencing metabolic rates. 
Temperature can increase mutation rates (Rohde 1992, Gillooly 
et al. 2005, Allen and Gillooly 2006), and decreases generation 
time (Gillooly et al. 2002). This has the potential to promote evo-
lutionary rates, leading to elevated species richness in places with 
high temperatures. In contrast, potential (or chemical) energy 
refers to energy stored in biomolecules produced primarily by 
photosynthesis. At local scales, potential energy has been linked 
to species richness through its effects on population size. More 
food (potential energy) potentially translates into larger or denser 
populations. In turn, populations with large numbers of indi-
viduals are less likely to go extinct (more individuals hypothesis: 
Srivastava and Lawton 1998). A number of theoretical and em-
pirical studies have documented the relationship between extinc-
tion probability and number of individuals (Lande 1993, Lynch 
et al. 1995) or range size (Jones et al. 2003). This could produce 
species-rich biotas in highly productive areas due to reduction 
in extinction rates. Additionally, since energy transmission across 
the food web is inefficient, species in high trophic levels tend to 
be the most energy-constrained, and less abundant; this could 
cause part of the reduction in species richness to be the result of 
loss of species at the top of the food web, and produce an asso-
ciation between energy availability and number of trophic levels 
(Kaunzinger and Morin 1998, but see Post 2002). 

A final consideration related to the energy hypothesis is that 
water can play an important role in mediating energetic effects. 
Water is fundamental in transformation of light energy into po-
tential energy by photosynthesis, and water is also fundamental in 
transfer of energy produced by autotrophs to higher levels of the 
food web. Consequently, water availability can be an important 
constraint on creation and transfer of potential energy and can 
play a fundamental role in effects that energy has on species rich-
ness (Evans et al. 2005). 

These and various other explanations for the strong species-
energy relationships observed have been proposed (Evans et al. 
2005). But, the exact way by which energy affects taxonomic di-

versity is still unknown since all possibilities lack strong empirical 
support. For example, the strong species-energy relationship is true 
for both endotherm and ectoterms, yet the effects of temperature 
on metabolic rates are mostly restricted to ectotherm organisms 
(Hawkins et al. 2007). Similarly, the more individuals hypotheses 
requires that places with higher species richness have also popula-
tions that are denser, and this has found not to be the case (Currie 
et al. 2004). Much work will be necessary to clarify the mecha-
nisms behind the frequent richness-energy relationships. 

Environmental heterogeneity 

Environmental heterogeneity can occur in at least two forms: top-
ographic complexity or habitat variability (Ruggiero and Hawkins 
2008). Topographic complexity potentially increases number of 
barriers to dispersal (Simpson 1964), thereby reducing gene flow 
and increasing population subdivision. In turn, populations iso-
lated from one another can speciate allopatrically. This process can 
lead to high species richness in topographically heterogeneous re-
gions. Besides topographic complexity, habitat variability can also 
have an effect on species richness. High habitat variability provides 
a broader niche space, or “more niches” (MacArthur 1964). At lo-
cal scales, this offers a scenario where a higher number of species 
can co-exist in a community by occupying different portions of 
the niche space. At a regional scale, high spatial habitat variability 
can produce elevated levels of species turnover across communi-
ties, leading to regions with high species richness independently of 
richness at local levels. Additionally, habitat variability can affect 
speciation rates by allowing an original species to split into two or 
more descendent species through parapatric speciation (Rosenz-
weig 1995, Graham et al. 2004). 

Seasonality

Seasonality can be considered a form of environmental heteroge-
neity that occurs along a temporal dimension, and has been both 
positively and negatively associated with species richness. On one 
hand, similar to the effect produced by spatial environmental het-
erogeneity, seasonality could provide the template for species to 
specialize and coexist by occupying different portions of the tem-
poral niche dimension (Tilman et al. 1993). In contrast, seasonal-
ity has been proposed as a source of environmental instability (e.g. 
wide temperature fluctuations). This temporal environmental in-
stability can generate wide population fluctuations, which have 
been shown to significantly increase extinction risk (Inchausti and 
Halley 2003). Additionally, species may ameliorate the problem 
of temporal variability by developing broad niches (Pianka 1966, 
MacArthur 1972). At local scales, broad niches can lead to species-
poor communities due to lack of fine partitioning of niche space 
(MacArthur 1972). At large scales, broad niches can lead to species 
with large geographic distributions, with few ecological barriers to 
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dispersal, and little population subdivision, which in turn would 
reduce the likelihood of speciation events. 
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Figure S1. Spatial distribution of environmental characteristics used to predict bat species richness estimated in each 100 by 100 km cell 
for which species richness data were obtained. First row: energy variables. (A) Average net primary productivity (g of Carbon yr–1 × 1 000 
000 000); (B) average annual precipitation (mm); (C) average mean annual temperature (°C). Second row: heterogeneity variables. (D) 
Elevation standard deviation (masl); (E) NPP standard deviation (g of Carbon yr–1 × 1 000 000 000); (F) annual precipitation standard 
deviation (mm); (G) mean annual temperature standard deviation (°C). Third row: seasonality variables. (H) Average coefficient of vari-
ation of monthly precipitation; (I) average monthly standard deviation of temperature (°C). 
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Figure S2. Correlations among logarithms of predictor variables. Top matrix presents scatterplots, bottom matrix presents Pearson cor-
relation coefficients. In scatterplots, lines represent linear regression fits. Points vary in gray intensity depending on species richness; light 
gray corresponds to low species richness; dark gray corresponds to high species richness. 
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R code 

Code to run variation partitioning analyses, calculate bootstrapped confidence intervals, and perform 
permutation test 

#####################################################################
#### FUNCTION: “enviro.analyses”. A function to estimate correlation of richness with environmental and 
spatial predictors, calculate confidence intervals by bootstrapping or subsampling, and perform a permutation 
test of difference from random. Variation in dependent variable (“richness”) is partitioned into fractions of 
variation in two hierarchical steps. First, variation is partitioned between spatial predictors (produced from 
argument “coords”) and all environmental predictors (combination of arguments “X1”, “X2”, and “X3”). 
Second, variation is partitioned among environmental predictor sets (given by arguments “X1”, “X2”, and 
“X3”). Variation partitioning is carried out by the function “varpart”, provided in the package “vegan”. A 
description of variation partitioning analysis can be found in Borcard et al. (1992) and Legendre and Legendre 
(1998). Proportions of variation in these analyses are estimated by adjusted R-square values following Peres-
Neto et al. (2006). Additionally, single variable regressions are produced between the dependent variable and 
each of the variables in the environmental predictor matrices. Disclaimer: This code is provided “as is”, without 
warranties of any kind. Users of this function are cautioned that, while due care has been taken and the code 
is believed accurate, it has not been rigorously tested and its use and results are solely the responsibilities of the 
user. 

## ARGUMENTS: 

# richness: a vector length “n”, where “n” is the number of observations. These richness values are used as the 
dependent variable. 

# coords: a matrix of dimensions “n” by 2, which contains coordinates for the spatial location of each value 
of richness. Columns of this matrix must be labeled “x” and “y”, and order of the columns does not matter. 
A set of spatial predictors are produced from these coordinates. These spatial predictors are all elements of a 
polynomial of degree given by the argument “space.poly.degree” (Legendre and Legendre 1998, pages: 739-
745). 

# X1, X2 and X3: three matrices of dimensions “n” by “p”, where “p” is number of predictors included in a 
given matrix. These matrices are used as sets of explanatory variables. Each matrix has to represent a different 
hypothesis, for example: energy, heterogeneity and seasonality. 

# rand.type: a character argument indicating whether bootstrap or subsampled confidence intervals are required 
(options “bootstrap.CI” and “subsampling.CI” respectively) or permutation test of difference from random 
is required (option: “permutation.test”). For the “bootstrap.CI” option, the “richness” vector and the rows 
in “coords”, “X1”, “X2” and “X3” matrices are sampled with replacement to create new variables to conduct 
analyses in each randomization. For the “subsampling.CI” option, the original “richness” vector and predictor 
matrices are sampled at random to built smaller datasets for analyses in each randomization. The number of 
observations to be incorporated into these new dependent and independent variables is determined by the 
argument “subsample.n”. For this option, if “subsample.n” is equal to the number of observation in the original 
variables, then analyses in each randomization are the same as the analyses for the original variables. For the 
“permutation.test” option, the “coords”, “X1”, “X2”, and “X3” matrices are left unmodified, but the “richness” 
vector is randomly reordered; in this way the associations of richness with values in the explanatory variables is 
destroyed. This option is also modified by the argument “subsample.n” since the observations included in the 
permutation test are a subset of size “subsample.n” of the original data. 
 
# rand.n: a non-negative integer value providing the number of randomizations to be performed. 

# subsample.n: a positive integer value providing the number of observations that will be used for analyses 
during randomizations in options “subsampling.CI” and “permutation.test” of argument “rand.type”. See 
argument “rand.type” for detail. 

# write.res: a logical argument indicating whether the results should be written into files. In case of TRUE, 
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results will be written into two files. One presents the summarized results, and the other contains the detailed 
results coming from each randomization. 

# res.name: a character argument to be used as part of the name for the files to be written with the results . 

# space.poly.degree: a positive non-zero integer that gives the degree of the polynomial that is built from the 
coordinates in argument “coords” to represent the spatial predictors in analyses. 

# print.progress: a logical argument defining whether progress on randomizations should be printed on the 
screen. 

# zero.rich.rm: a logical argument defining whether observations where the dependent variable equals zero 
should be excluded from analyses. 

#use.anal: a vector of length “n” that defines which observations to use for analyses and which not to use. 
Observations to use nee to be represented by 1’s, and observations to remove should be represented by 0’s. 

## OUTPUT: 

# the output of this function consist on a list of 4 elements. 

# 1) original_n: a scalar defining what the sample size of the original data is. 

# 2) randomizations_n: a scalar defining what the sample size used for randomizations is. 

# 3) summary_results: a matrix with summarized results from all simulations. This includes the a) empirical 
or original estimates for each coefficient or fraction of variation, b) average coefficient estimates from 
randomizations, and c) 95% confidence intervals (if “rand.type” is set to “bootstrap.CI” or “subsampling.CI”) 
or critical values for alpha 0.05 and 0.025 (if “rand.type” is set to “permutation.test”). 

# 4) randomization_details: a matrix containing coefficient estimates produced by each randomization. 

## CITED LITERATURE: 

# Borcard D., Legendre P. and Drapeau P. 1992. Partialling out the spatial component of ecological variation. - 
Ecology 73: pp. 1045-1055. 
# Legendre P., & and L Legendre. 1998. Numerical ecology. - Elsevier Science B.V. 
# Peres-Neto P.R., Legendre P., Dray S. et al. 2006. Variation partitioning of species data matrices: estimation 
and comparison of fractions. - Ecology 87: pp. 2614-2625. 

enviro.analyses<-function(richness, coords, X1, X2, X3, rand.type=”bootstrap.CI”, rand.n=0, subsample.
n=length(richness), write.res=F, res.name=”results”, space.poly.degree=3, print.progress=FALSE, zero.rich.
rm=TRUE, use.anal=rep(1, length(richness))) 
{ 
  
 coords<-as.data.frame(coords) 
 X1<-as.data.frame(X1) 
 X2<-as.data.frame(X2) 
 X3<-as.data.frame(X3) 
   
 coords<-coords[use.anal==1,] 
 X1<-X1[use.anal==1,] 
 X2<-X2[use.anal==1,] 
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 X3<-X3[use.anal==1,] 
 richness<-richness[use.anal==1] 

 if(zero.rich.rm==TRUE) 
 { 
  coords<-coords[richness>0,] 
  X1<-X1[richness>0,] 
  X2<-X2[richness>0,] 
  X3<-X3[richness>0,] 
  richness<-richness[richness>0] 
 } 

 environment<-data.frame(X1, X2, X3) 
 space<-poly(as.matrix(cbind(coords$y, coords$x)), degree=space.poly.degree) 
  

 if(length(richness)!=nrow(X1) | length(richness)!=nrow(X2) | length(richness)!=nrow(X3) | 
length(richness)!=nrow(coords)) stop(“error: length of richness vector do not match number of rows in 
explanatory matrices”) 

  
 library(vegan) 

 var.res.names<-c(names(X1), names(X2), names(X3)) 
 var.res.names<-paste(rep(var.res.names, each=4), rep(c(“_interc”, “_B”, “_r2”, “_adjr2”), length(var.res.
names)), sep=”_”) 
  
 var.res.names<-as.character(var.res.names) 

   rand.results<-as.data.frame(matrix(NA, 22+length(var.res.names), 5)) 
  
 if(rand.type==”bootstrap.CI” | rand.type==”subsampling.CI”) names(rand.results)<-c(“coefficient_
name”, “original_estimate”, “mean_RandomEstimates”, “low_CI”, “high_CI”) 
 if(rand.type==”permutation.test”) names(rand.results)<-c(“coefficient_name”, “original_estimate”, 
“mean_RandomEstimates”, “low_CritVal”, “high_CritVal”) 

  
 rand.results[,1]<-c(“rich_lat”, “full_model”, “space_full”, “enviro_full”, “space_not_enviro”, “space_
intersect_enviro”, “enviro_not_space”, “full_model_residuals”, “X1_full”, “X2_full”, “X3_full”, “X1+X2”, 
“X1+X3”, “X2+X3”, “a”, “b”, “c”, “d”, “e”, “f”, “g”, “h”, var.res.names) 

 abs.y<-abs(coords$y) 
 lat.rich<-summary(lm(richness~abs.y+I(abs.y^2)))$r.squared 
   
 data.varpart.se<-varpart(richness, space, environment) 
 attach(data.varpart.se$part) 
 res.se<-c(fract$Adj.R.square[c(3,1,2)], indfract$Adj.R.square[c(1,2,3,4)] ) 
    detach(data.varpart.se$part) 

 data.varpart.ee<-varpart(richness, X1, X2, X3) 
 attach(data.varpart.ee$part) 
 res.ee<-c(fract$Adj.R.square[c(1:6)], indfract$Adj.R.square) 
 detach(data.varpart.ee$part) 
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 sing.var.res<-numeric() 

 for(j1 in 1:length(names(X1))) 
 { 
  sing.var.res<-c(sing.var.res, summary(lm(richness~X1[,j1]))$coefficients[1], summary(lm(richne
ss~X1[,j1]))$coefficients[2], summary(lm(richness~X1[,j1]))$r.squared, summary(lm(richness~X1[,j1]))$adj.r.s
quared) 
 } 

 for(j2 in 1:length(names(X2))) 
 { 
  sing.var.res<-c(sing.var.res, summary(lm(richness~X2[,j2]))$coefficients[1], summary(lm(richne
ss~X2[,j2]))$coefficients[2], summary(lm(richness~X2[,j2]))$r.squared, summary(lm(richness~X2[,j2]))$adj.r.s
quared) 
 } 

 for(j3 in 1:length(names(X3))) 
 { 
  sing.var.res<-c(sing.var.res, summary(lm(richness~X3[,j3]))$coefficients[1], summary(lm(richne
ss~X3[,j3]))$coefficients[2], summary(lm(richness~X3[,j3]))$r.squared, summary(lm(richness~X3[,j3]))$adj.r.s
quared) 
 } 

 rand.results[,2]<-c(lat.rich, res.se, res.ee, sing.var.res) 

   
 if(rand.n>0) 
 { 

  rand.details<-matrix(NA, rand.n, 22+length(var.res.names)) 
  colnames(rand.details)<-c(“rich.lat”, “full_model”, “space_full”, “enviro_full”, “space_not_
enviro”, “space_intersect_enviro”, “enviro_not_space”, “full_model_residuals”, “X1_full”, “X2_full”, “X3_full”, 
“X1+X2”, “X1+X3”, “X2+X3”, “a”, “b”, “c”, “d”, “e”, “f”, “g”, “h”, var.res.names) 

   
  id<-seq(1:length(richness)) 

   
  if(rand.n>0) 
  { 
   for (i in 1:rand.n) 
   { 
    if(print.progress==TRUE) print(i) 

    res.i<-numeric() 
 
    if(rand.type==”bootstrap.CI”) 
    { 
     rand.id<-sample(id, replace=T) 
     coords.i<-coords[rand.id,] 
     X1.i<-X1[rand.id,] 
     X2.i<-X2[rand.id,] 
     X3.i<-X3[rand.id,] 
    } 
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    if(rand.type==”subsampling.CI”) 
    { 
     rand.id<-sample(id, subsample.n, replace=F) 
     coords.i<-coords[rand.id,] 
     X1.i<-X1[rand.id,] 
     X2.i<-X2[rand.id,] 
     X3.i<-X3[rand.id,] 
    } 

    if(rand.type==”permutation.test”) 
    { 
     rand.id<-sample(id, subsample.n, replace=F) 
     richness.i<-richness[rand.id] 
     coords.i<-coords[rand.id,] 
     X1.i<-X1[rand.id,] 
     X2.i<-X2[rand.id,] 
     X3.i<-X3[rand.id,] 
     
     rand.id<-sample(1:subsample.n, replace=F) 

    } 
  

    richness.i<-richness[rand.id] 
    environment.i<-data.frame(X1.i,X2.i,X3.i) 
    space.i<-poly(as.matrix(cbind(coords.i$y, coords.i$x)), degree=space.poly.
degree) 

    abs.y.i<-abs(coords.i$y) 
    lat.richness.i<-summary(lm(richness.i~abs.y.i+I(abs.y.i^2)))$r.squared 
    
    data.varpart.se.i<-varpart(richness.i, space.i, environment.i) 
    attach(data.varpart.se.i$part) 
    res.se.i<-c(fract$Adj.R.square[c(3,1,2)], indfract$Adj.R.square[c(1,2,3,4)] ) 
       detach(data.varpart.se.i$part) 

    data.varpart.ee.i<-varpart(richness.i, X1.i, X2.i, X3.i) 
    attach(data.varpart.ee.i$part) 
    res.ee.i<-c(fract$Adj.R.square[c(1:6)], indfract$Adj.R.square) 
    detach(data.varpart.ee.i$part) 

    sing.var.res.i<-numeric() 

    for(j1 in 1:length(names(X1.i))) 
    { 
     sing.var.res.i<-c(sing.var.res.i, summary(lm(richness.
i~X1.i[,j1]))$coefficients[1], summary(lm(richness.i~X1.i[,j1]))$coefficients[2], summary(lm(richness.
i~X1.i[,j1]))$r.squared, summary(lm(richness.i~X1.i[,j1]))$adj.r.squared) 
    } 

    for(j2 in 1:length(names(X2.i))) 
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    { 
     sing.var.res.i<-c(sing.var.res.i, summary(lm(richness.
i~X2.i[,j2]))$coefficients[1], summary(lm(richness.i~X2.i[,j2]))$coefficients[2], summary(lm(richness.
i~X2.i[,j2]))$r.squared, summary(lm(richness.i~X2.i[,j2]))$adj.r.squared) 
    } 

    for(j3 in 1:length(names(X3.i))) 
    { 
     sing.var.res.i<-c(sing.var.res.i, summary(lm(richness.
i~X3.i[,j3]))$coefficients[1], summary(lm(richness.i~X3.i[,j3]))$coefficients[2], summary(lm(richness.
i~X3.i[,j3]))$r.squared, summary(lm(richness.i~X3.i[,j3]))$adj.r.squared) 
    } 
  

    rand.details[i,]<-c(lat.richness.i, res.se.i, res.ee.i, sing.var.res.i) 
 
   } 

  } 

   
   
  rand.results[,3]<-apply(rand.details, 2, mean, na.rm = TRUE) 

  if(rand.type==”bootstrap.CI” | rand.type==”subsampling.CI”) rand.results[,c(4,5)]<-
t(apply(rand.details, 2, quantile, probs=c(0.025, 0.975), na.rm = TRUE)) 

  if(rand.type==”permutation.test”) rand.results[,c(4,5)]<-t(apply(rand.details, 2, quantile, 
probs=c(0.950, 0.975), na.rm = TRUE)) 

 } 

 if(rand.n==0) 
 { 
  richness.i<-numeric() 
  rand.details<-”randomizations not requested” 
 } 
  

 if(write.res==T) 
 { 
   
  file.name.1<-paste(res.name, “_summary.txt”) 
  file.name.2<-paste(res.name, “_details.txt”) 
 
  write.table(rand.results, file=file.name.1, row.names=F, quote=F, sep=”\t”) 
  write.table(rand.details, file=file.name.2, row.names=F, quote=F, sep=”\t”) 
   
 } 

 output<-list(length(richness), length(richness.i), rand.results, rand.details) 
 names(output)<-c(“original_n”, “randomizations_n”, “summary_results”, “randomization_details”) 

  
 output 
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} 

#####################################################################


