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ADDITIONAL TABLES AND FIGURES

Table A1

Detailed results of the two-way ANOVA and Tukey's post-hoc tests. Adjusted R2 values 
of stochastic species-environment relationships were compared among hypotheses and 
continents. Only adjusted R2s of the primary variable in each simulation run were used. 
Primary adjusted R2 values were logit-transformed before analysis. Significant p-values 
are presented in bold letters. Not applicable values (NA) are generated because energy 
and heterogeneity were never the best predictors of simulated richness in Eurasia (Fig. 5). 

Two-way AVOVA test Tukey's post hoc test

F p Contrast Difference p

Hypothesis

187.249 <0.001 Heterogeneity Energy -0.780 0.009

Seasonality Energy 0.559 <0.001

Seasonality Heterogeneity 1.339 <0.001

Continent

458.849 <0.001 Australia Africa 0.954 <0.001

Eurasia Africa -0.016 0.973

New World Africa -0.188 <0.001

Eurasia Australia -0.970 <0.001

New World Australia -1.142 <0.001

New World Eurasia -0.172 <0.001

Hypothesis*Continent

7.471 <0.001 Energy: Africa Energy: Australia 0.492 0.271

Energy: Africa Energy: Eurasia NA NA

Energy: Africa Energy: New World 0.181 0.128

Energy: Africa Heterogeneity: Africa -1.050 0.475

Energy: Africa Heterogeneity: Australia 0.109 1.000

Energy: Africa Heterogeneity: Eurasia NA NA

Energy: Africa Heterogeneity: New World -1.252 0.205

Energy: Africa Seasonality: Africa -0.191 0.173

Energy: Africa Seasonality: Australia 1.381 <0.001

Energy: Africa Seasonality: Eurasia 0.405 <0.001

Energy: Africa Seasonality: New World 0.077 0.790

Energy: Australia Energy: Eurasia NA NA

Energy: Australia Energy: New World -0.311 0.907

Energy: Australia Heterogeneity: Australia -0.383 1.000

Energy: Australia Heterogeneity: Eurasia NA NA

Energy: Australia Heterogeneity: New World -1.745 0.020
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Energy: Australia Seasonality: Australia 0.889 <0.001

Energy: Australia Seasonality: Eurasia -0.088 1.000

Energy: Australia Seasonality: New World -0.415 0.547

Energy: Eurasia Energy: New World NA NA

Energy: Eurasia Heterogeneity: Eurasia NA NA

Energy: Eurasia Heterogeneity: New World NA NA

Energy: Eurasia Seasonality: Eurasia NA NA

Energy: Eurasia Seasonality: New World NA NA

Energy: New World Heterogeneity: New World -1.434 0.08

Energy: New World Seasonality: New World -0.104 0.881

Heterogeneity: Africa Energy: Australia 1.542 0.075

Heterogeneity: Africa Energy: Eurasia NA NA

Heterogeneity: Africa Energy: New World 1.231 0.234

Heterogeneity: Africa Heterogeneity: Australia 1.158 0.818

Heterogeneity: Africa Heterogeneity: Eurasia NA NA

Heterogeneity: Africa Heterogeneity: New World -0.203 1.000

Heterogeneity: Africa Seasonality: Africa 0.858 0.778

Heterogeneity: Africa Seasonality: Australia 2.430 <0.001

Heterogeneity: Africa Seasonality: Eurasia 1.454 0.064

Heterogeneity: Africa Seasonality: New World 1.127 0.359

Heterogeneity: Australia Energy: Eurasia NA NA

Heterogeneity: Australia Energy: New World 0.073 1.000

Heterogeneity: Australia Heterogeneity: Eurasia NA NA

Heterogeneity: Australia Heterogeneity: New World -1.361 0.612

Heterogeneity: Australia Seasonality: Australia 1.272 0.185

Heterogeneity: Australia Seasonality: Eurasia 0.296 1.000

Heterogeneity: Australia Seasonality: New World -0.031 1.000

Heterogeneity: Eurasia Energy: New World NA NA

Heterogeneity: Eurasia Heterogeneity: New World NA NA

Heterogeneity: Eurasia Seasonality: Eurasia NA NA

Heterogeneity: Eurasia Seasonality: New World NA NA

Heterogeneity: New World Seasonality: New World 1.330 0.136

Seasonality: Africa Energy: Australia 0.684 0.025

Seasonality: Africa Energy: Eurasia NA NA

Seasonality: Africa Energy: New World 0.373 <0.001

Seasonality: Africa Heterogeneity: Australia 0.300 1.000

Seasonality: Africa Heterogeneity: Eurasia NA NA

Seasonality: Africa Heterogeneity: New World -1.061 0.469

Seasonality: Africa Seasonality: Australia 1.572 <0.001
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Seasonality: Africa Seasonality: Eurasia 0.596 <0.001

Seasonality: Africa Seasonality: New World 0.269 0.005

Seasonality: Australia Energy: Eurasia NA NA

Seasonality: Australia Energy: New World -1.200 <0.001

Seasonality: Australia Heterogeneity: Eurasia NA NA

Seasonality: Australia Heterogeneity: New World -2.633 <0.001

Seasonality: Australia Seasonality: Eurasia -0.976 <0.001

Seasonality: Australia Seasonality: New World -1.303 <0.001

Seasonality: Eurasia Energy: New World -0.223 0.012

Seasonality: Eurasia Heterogeneity: New World -1.657 0.015

Seasonality: Eurasia Seasonality: New World -0.327 <0.001
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COMPLETE DESCRIPTION OF DRD SIMULATION MODEL

The DRD model takes place in time steps. In the first time step, one cell from throughout 
the domain is randomly selected to be the point of origin for the diversifying clade; all 
cells in the domain have the same probability of being chosen. The first species in the 
simulation colonizes this starting cell, and its target range is selected at random from a 
pool of range sizes; this pool of range sizes follows a log-normal distribution (see 
variations to simulation parameters). Starting with the second time step, a number of 
events take place in the following sequence.

1. Range shift. Each species currently present in the domain is evaluated for range 
shift. Whether a species moves it distribution or not is determined by the 
parameter MP, which is the probability of range movement. MP is identical for all 
species and it is constant through time. If a species is selected to move its 
distribution, then it chooses at random one of eight directions (north, north-east, 
east, south-east, south, south-west or west), and moves its entire distribution one 
cell in such direction. This process, repeated through time, causes species 
distributions to follow random walks within the domain, and the rate of 
movement is given by MP. 

During these random shifts, a species can move part of its distribution outside of 
the domain. In such case, that part of the distribution is lost and will need to be 
regained by stochastic spread of its range elsewhere (see below). However, no 
species was allowed to go extinct by moving its entire distribution outside the 
domain.

2. Range spread. Each species present in the domain is evaluated as to whether it has 
reached its target range size. Those species that have range sizes smaller than their 
target range size are tagged for stochastic range spread. In the spreading dye 
algorithm of Jetz & Rabhek (2001), stochastic spread of species occurs as each 
cell at the edge of the distribution “sends dispersers” and colonizes one of the 
immediately adjacent cells. In our algorithm, however, we allow for each of the 
already occupied cells to “send dispersers” to adjacent cells or to cells that are 
farther away (similar to Colwell et al., 2009). Coordinates for the cell to “receive 
dispersers” from an already occupied cell are determined by: 1) sampling a 
dispersal distance at random from a log-normal distribution with mean of 0 and 
standard deviation of 0.4 on a log-scale; dispersal distance was then rounded to 
the nearest higher integer, 2) giving the dispersal distance a direction by 
multiplying it by either 1, 0 or -1 selected at random, and 3) summing the 
coordinates of the cell of origin plus the dispersal distance. This process is carried 
out independently for the x and y coordinates. If the cell “receiving dispersers” is 
empty, then the species colonizes it. If the species is already present in that cell, 
the cell is outside of the domain, or the cell of destination is the same as the cell of 
origin, then no change in the distribution of the species occurs. This process is 
conducted for all occupied cells. 
The standard deviation for the log-normal distribution was set to 0.4 because this 
value was found to produce rare dispersal events larger than one or two cells away 
from the cell of origin; this has the consequence of producing distributions with 
few or no internal empty cells (Colwell et al., 2009). This was important because 
most current studies of diversity at broad scales have used range map overlaps to 
estimate diversity (McPherson & Jetz, 2007). These are typically maps of extent 
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of occurrence, which contain little or no unoccupied areas within the distribution 
of a species. At the same time, the value of 0.4 also speeds the spread of species 
distributions by producing rare long dispersal events. 

3. Speciation. Each species in the domain is evaluated for speciation. Probability of 
a species giving rise to a new one is provided by the parameter SP, the speciation 
probability. Per-species probability of speciation is identical for all species and 
constant through time. Speciation in our simulations is modeled as a punctuated 
event. For each speciation event, a cell is selected at random from throughout the 
distribution of the parental species. These cells represent the points of origin for 
the distribution of the new species. This is equivalent to saying that a population 
or an individual has speciated and given rise to a new species. Then, new target 
range sizes are sampled at random and with replacement from the pool of range 
sizes; these range sizes are then assigned to each of the new species. 

4. Extinction. All species currently present in the domain are evaluated for survival. 
Probability of a species going extinct is given by the parameter EP, the extinction 
probability. If a species is selected for extinction, then the distribution of such 
species disappears from the domain. EP is identical among all species, but it can 
either remain constant through time or change as a function of diversity. This 
produces two patterns of clade diversification: exponential and logistic (see 
variations to simulation parameters).

After these steps have taken place, the simulation moves to the next time step to 
start another cycle of range movements, range growths, speciations and extinctions. The 
simulation stops when the surviving number of species in the clade matches the 
predetermined number of species plus one. This time between the origin of the last 
required species and the origin of the additional species allows the distribution of the last 
species to develop. The additional species is then eliminated from the output. At this 
point, a species richness gradient is estimated by counting the number of range overlaps 
in each cell of the domain. For additional details see annotated R code.

Variations to simulation parameters

Each repetition of the simulation models varied its parameterization. In this way, we tried 
to emulate some of the variation observed among empirical clades in the evolutionary and 
biogeographic processes that lead to the construction of richness gradients and richness-
environment relationships. This variation can also be used to investigate the potential 
effects that simulation parameters have on the strength of richness-environment 
relationships produced by our simulations. Simulation runs varied in: 1) total number of 
species produced during the diversification of the clade, 2) mean of the pool frequency 
distribution of range sizes, 3) place of origin for the clade, 4) probability of species 
shifting their ranges, 5) probability of speciation, 6) initial probability of extinction, and 
7) whether accumulation of species in a clade was logistic or exponential. 

1. Clade diversity (Div): For each simulation, the target clade diversity was selected 
at random from a uniform distribution of richness values ranging from 100 to 300 
species. Many studies of species richness gradients use groups of species that 
contain more than our maximum number of species (e.g., Bokma et al., 2001; 
Storch et al., 2006; Rangel et al., 2007); but, these studies typically use 
polyphyletic species groups. In our study, artificial clades with much larger 
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numbers of species would have slowed down our simulations significantly, 
making it difficult to replicate extensively. However, we believe that much higher 
number of species would not strongly modify our conclusions. 

2. Proportional range size (PRS): During simulations, each species selects at 
random its target range size from a frequency distribution of ranges. It is well 
documented that range sizes in real species groups are skewed: more species have 
smaller distributions than large distributions (Gaston, 2003). Many of these 
empirical range-size frequency distributions approximate a log-normal 
distribution (although many times they are not perfectly described by this 
distribution; Gaston, 2003). Thus, for each of our simulation runs, the frequency 
distribution of range sizes was modeled as: F=exp [ N  μ,σ 2 ] . Where
μ=ln domain size∗p  ; p is a variate from a uniform distribution ranging from 

0.05 to 0.7. The value of p determines the proportional average range size, and 
was varied randomly among simulation runs. This caused the mean of the pool 
frequency distribution to vary approximately from 5% to 70% of the domain size. 
Many empirical studies of richness gradients at broad extents have used species 
groups where their average range size is within this range (Dunn et al., 2007).
The variance is determined as: σ 2=0 .8−p 

2 . This ensured that as the average 
range size increased, the species with ranges larger than the domain did not 
dominate the frequency distribution. Any species with a range size larger than the 
domain was shortened to match the total domain size.

3. Place of clade origin: The cell colonized by the first species represents the place 
of origin for the clade. For each simulation, a cell was selected at random for the 
initial colonization of the domain. All cells had identical probabilities of being 
selected. We then recorded the latitude (Lat) and longitude (Lon) of the place of 
origin for the clade in each simulation run.

4. Range movement probability (MP): the per-species/per-time step probability of 
range movement for each simulation was drawn at random from a uniform 
distribution varying from 0 to 1. MP of 0 produces species with static ranges, 
while MP of 1 causes every species to move its range at every time step.

5. Diversification type (DT): For each simulation, one of two modes of increase in 
species richness is possible: logistic or exponential (Lane & Benton, 2003; Benton 
& Harper, 2009). For exponential richness growth, per-species/per-time step 
probabilities of speciation and extinction remain constant through time. However, 
in the case of logistic richness growth, the speciation probability remains constant 
and the extinction probability changes positively as a function of the number of 
species in the domain (see below). In each continent, half the simulations used an 
exponential model of diversification, and the other half used a logistic model. 

6. Speciation probability (SP): At each time step, there is a probability for each 
species to speciate. For each simulation, speciation probability was drawn at 
random from a uniform distribution varying from 0.0005 to 0.005. This typically 
puts the speciation events in a much longer time scale than either range growth or 
range movement.

7. Extinction probability (EP): For each simulation run, extinction probability was 
drawn at random from a uniform distribution of values ranging from 0 to (SP x 
0.75). This ensures that in each simulation the extinction rate is at most 75% of 
the speciation rate, leading to diversifying clades with positive richness growth. 
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Smaller differences between speciation and extinction rates would slow down 
simulations too much to be able to obtain enough replications.

For the cases where diversification model is exponential, the per-species/per-time 
step extinction probability is diversity-independent and constant through time. On 
the other hand, if richness growth is logistic, extinction probability increases as 
the clade diversifies. This increase is adjusted so that the equilibrium diversity 
produced by speciation and extinction probabilities equals the required clade 
diversity (Div). Thus, extinction varies with the number of species according to 
the following function:

where EPt is the probability of extinction at time t, EP0 is initial probability of 
extinction, SP is the probability of speciation, Div is the target clade diversity, and 
divt is the clade diversity at time t.

EP t =EP0
SP−EP0

Div
div t
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EFFECTS OF SIMULATION PARAMETERS ON SIMULATED 
RICHNESS-ENVIRONMENT RELATIONSHIPS

Simulation runs for our DRD model varied in simulation parameters (see detailed 
description of DRD simulation model for more information). We included this variation 
with the objective of emulating variability observed in diversification of empirical clades. 
However, this random variation can also be used to investigate the influence that 
simulation parameters have on strength of species-environment relationships produced by 
our model. 

Methods

To determine which parameters had a significant effect on strength of stochastic species-
environment relationships, we ran multiple regressions in which logit-transformed 
adjusted R2s (not primary adjusted R2s) of stochastic richness-environment relationships 
were the dependent variable and the different simulation parameters were the predictors: 
1) final clade diversity, 2) proportional range size, 3) latitude of clade origin, 4) longitude 
of clade origin, 5) probability of range movement, 6) probability of speciation 7) initial 
probability of extinction, and 8) diversity growth type. We ran one of these regressions 
for each combination of hypothesis and domain. We used regression coefficients to 
estimate the effects of parameters on simulation outcomes. To make coefficients 
comparable, both dependent and independent variables were centered and standardized.

Results and Discussion

Our results indicate that simulation parameters can explain a significant proportion of 
variation in stochastic species-environment relationships (from 2.1% to 60.1%; 
mean=24.1%; Fig. A2). But in the majority of cases, most variation cannot be accounted 
for (Fig. A2). This suggests that influence of simulation parameters is overridden by 
stochasticity in our model, so that frequently most variation in strength of species-
environment relationships is not produced by variation in simulation parameters. 

Moreover, effects of simulation parameters change much among continents and 
hypotheses, and no simulation parameter had a consistently strong effect on species-
environment relationships (Fig. A2). For example, even though proportional range size 
was significant in 10 of 12 cases, its effects were variable and usually small. The only 
exception was the effect of this parameter on the species-heterogeneity and species-
seasonality relationships in the New World. According to our results, as range size 
increases, the strength of species-environment relationships in the New World tend to 
significantly decrease. The causes for this effect are unclear, and would require further 
investigation, which is outside the objectives of the current analyses. Movement 
probability was also frequent predictor of species-environment relationships: it was 
significant in 9 out of 12 cases. However, the direction of its effect changes considerably: 
in 4 cases it had a positive effect, and in 5 its effect was negative. Moreover, its effects 
were typically small. Speciation probability and latitude of clade origin were significant 
predictors in 5 out of 12 cases, but once again effects were typically very small. All other 
simulation parameters were rarely significant predictors of stochastic species-
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environment correlations (Fig. A2). 

In general, no simulation parameter had a consistently strong effect on species-
environment relationships simulated by our DRD model. Moreover, significant 
parameters frequently changed in the direction of their effect and in their strength among 
domains and among environmental characteristics. This suggests that, when the 
distribution and diversification of clades occur independently of environmental gradients 
and at random, clade diversity, rates at which distributions have moved, and rates at 
which clades have diversified might not always be dominant determinants of the 
relationship between richness and environment gradients. These results, however, might 
be contingent on the particularities of the simulation model used, and are not necessarily 
applicable to other models of geographic clade diversification (see Gotelli et al., 2009 for 
a review). 
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COMPARISON OF RESULTS BASED ON OLS AND SPATIAL 
REGRESSIONS

Most analyses of environmental correlates of species richness at broad scales have made 
use of ordinary least squares (OLS) to fit models to data (Wright et al., 1993; Field et al., 
2009). Even though the OLS approach has been widely used, this type of analysis has 
been criticized recently because data frequently violate some of its most fundamental 
assumptions, particularly due to the autocorrelation that is frequently inherent in spatial 
data (Dormann et al., 2007; Beale et al., 2010). The two most important consequences of 
spatial autocorrelation are: 1) undesired changes in type I error rates of statistical tests, 
and 2) biases or uncertainties in the estimation of model parameters. Thus, 
macroecological studies are increasingly using regression models that are capable of 
handling better spatial autocorrelation in data. Advantages and drawbacks of these spatial 
regression models have been discussed in many recent publications, and their use and 
correct interpretation continue to be a source of discussion (e.g., Diniz-Filho et al., 2007; 
Dormann et al., 2007; Bini et al., 2009; Peres-Neto & Legendre, 2009; Beale et al., 
2010). Here, we investigate whether the spurious species-environment relationships we 
identified in our main analyses based on OLS regressions remain when analyses are 
repeated when using analyses that control for spatial autocorrelation.

Methods

In these analyses, instead of fitting only OLS regressions to each of the 1200 stochastic 
richness gradients, we also used spatial autoregressive error models (SARe). SARe 
models have been frequently used, and a recent study by Beale et al. (2010) showed that 
SARe is among the spatial regression models with best statistical behavior. Unlike OLS 
regressions, SARe models are fitted by maximum likelihood. Under this approach, it is 
not possible to calculate a measure of effect size that is equivalent to the R2 values used in 
OLS regressions. Thus, we compared species-environment relationships among 
environmental characteristics and continents using regression coefficients. For each 
simulation run, we fitted two full models (where all environmental predictors where 
included simultaneously), one for OLS regression and one for SARe model. For each 
regression, both simulated species richness and environmental predictors were centered 
and standardized. Regression coefficients and their p-values were retained from these 
analyses.

For each environmental predictor, we built a frequency distribution of the 
coefficient values produced by our DRD model in each continent. If spatial analyses 
correctly identify the fact that species richness gradients and environmental 
characteristics are causally unrelated in our simulations, then these distributions should 
be tightly distributed with a mean of zero. Thus, the means of frequency distributions of 
coefficients were compared with the expected value of zero using a one sample t-tests 
(using a non-parametric tests leads to identical conclusions; results not shown). 

Additionally, we tested whether absolute values of SARe coefficients were 
different among the different hypotheses that each variable represented, and for the 
different continents where simulations were run. We used absolute values because we 
were only interested in the degree of difference from zero for each coefficient (the 
“explanatory power” of each predictor), and not in its direction. For this analysis, we used 
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a linear mixed effects model. Coefficient absolute values were compared among 
hypotheses and continents, while simulation runs and variables were included as random 
effects. This was done in R using the function lme in the package nlme (Pinheiro, et al., 
2009). 

Finally, we used p-values calculated for each coefficient in each simulation to 
estimate type I error rates (the probability of rejecting a null hypothesis, given that the 
null hypothesis is true). These type I error rates were then compared to the expected value 
of 0.05.

One of the main drawbacks of spatial regression models is that they frequently are 
much more computer intensive than OLS regressions. Because of limits in computer 
capacity, we were not able to use every cell in each continent to fit these models. To make 
sure that we could run the analyses, we randomly subsampled and used 75% of the cells 
in each continent (Beale et al., 2010). All analyses (OLS and SARe) were run using the 
same subsample of cells from each continent. To define the best neighborhood distance 
parameter, we randomly selected ten simulated gradients from each continent. For these, 
we investigated what distance to define neighborhoods produced the best model (i.e., 
minimized the Akaike Information Criterion) by fitting 15 models ranging in values from 
100 to 600 km. Based on these sample cases, we found that a distance of 210 km was the 
best choice; thus, we used this neighborhood distance to build SARe models for all 
simulations. SARe models were fit using the function errorsarlm in the R package spdep 
(Bivand et al., 2010).

Results

According to one-sample t-tests, coefficient values from spatial analyses were statistically 
different from zero in all continents and for variables representing all hypotheses. The 
degree to which a particular coefficient was different from zero, however, was reduced in 
comparison to coefficients calculated using OLS regressions (Fig. A3). 

Despite this reduction in the value of coefficients from OLS to SARe, the 
magnitude of coefficients seem to follow a similar pattern to the one we established using 
OLS regression (Fig. A4). Our linear mixed effects model showed that there were 
statistically significant differences in the magnitude of SARe coefficient values among 
environmental hypotheses and among continents (Table A2). Moreover, a significant 
hypothesis-by-continent interaction term was identified (Table A2). 

It is clear that random correlations of richness with seasonality are typically 
stronger than richness-energy correlations, and that random richness-energy relationships 
are stronger than richness-heterogeneity relationships (Fig. A4). Additionally, average 
species-seasonality relationships are typically strongest in the New World, followed by 
Africa. However, species-energy relationships are strongest in Eurasia, closely followed 
by Africa. Differences among continents seem to be strong for seasonality and energy; 
but, continents differ only slightly in terms of random richness-heterogeneity 
relationships. These conclusions seem to be independent of the type of analysis used (Fig. 
A4).

The fact that most coefficient values are on average different from zero (Fig. A3) 
also translate into high type I error rates. In all continents and for at least one variable of 
each hypothesis, there were coefficients that had type I error rates ranging from moderate 
to extremely large (Fig. A5). 
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Discussion

As has been previously demonstrated (e.g., Dormann et al., 2007; Beale et al., 2010), 
when spatial autocorrelation is present in data, spatial analyses can typically produce 
better estimates of true coefficient values than the OLS approach can. In our case, spatial 
analyses typically produced coefficient values smaller than OLS regressions, approaching 
the true value of zero. Despite this improvement, however, spatial analyses did not solve 
the problem we identified with our OLS analyses: even if a clade has diversified 
independently of the influence of the environment, this clade can produce a richness 
gradient that is statistically correlated with environmental characteristics. 

Likewise, spatial analyses and OLS analyses agree that the expected-by-chance 
correlations between richness and environment are not homogeneous, but change 
significantly among environmental characteristics and among domains of distribution 
(i.e., continents). Our evaluation of type I error rates stresses the idea that even the use of 
spatial regression coefficients will lead to consistently identifying significant species-
environment relationships, even when these relationships are spurious.

 Many other types of statistical analyses have been used to account for spatial 
autocorrelation (Dormann et al., 2007). Among them, SARe has been identified as one of 
the models with best statistical behavior (Dormann et al., 2007, Beale et al., 2010). Other 
models, like generalized least squares (GLS), generalized additive mixed models 
(GAMM) and Bayesian conditional autoregressive models (BCA) were also identified by 
Beale et al. (2010) as good performing models. It is beyond the scope of this work to 
compare these different models in their performance with base on our simulated data. 
Nevertheless, GLS, GAMM and BCA, despite being more computer intensive, seem to 
lead to only marginally different models in most situations (Beale et al., 2010). Thus, we 
do not expect other spatial models to be able to fully correct for the problem of spurious 
richness-environment correlations that are expected by the random geographical 
diversification of clades. However, a more in-depth evaluation of the performance of 
spatial models, null models or their integration is required, and will be presented 
elsewhere.

Overall our results indicate that, even if a clade diversifies and its species 
distribute independently of any environmental effect, some level of species-environment 
correlations should be expected by chance alone. The use of spatial analyses is a good 
way to correct for the value of species-environment relationships as estimated by 
regression coefficients. We see the use of these models as an improvement over the more 
traditional OLS approach. However, our preliminary analyses suggest that spatial 
regressions seem insufficient to solve the problem we have identified. This potential for 
spurious species-environment correlations that change among environmental 
characteristics and among domains of distribution should be considered in future studies. 
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Table A2

Results of the linear mixed effects model run on absolute values of regression coefficients 
calculated using SARe models. Absolute regression coefficients were compared among 
hypotheses and continents; simulation runs and variables were used as random effects. 
Significant p-values are presented in bold numbers. 

df F p

Hypothesis 2, 2698 1163.45 <0.001

Continent 3, 8991 101.06 <0.001

Hypothesis*Continent 6, 8991 56.27 <0.001









J. S. Tello and R. D. Stevens – Appendix S1 20

REFERENCES

Beale, C.M., Lennon, J.J., Yearsley, J.M., Brewer, M.J. & Elston, D.A. (2010) Regression 
analysis of spatial data. Ecology Letters, 13, 246-264.

Benton, M.J. & Harper, D.A.T. (2009) Introduction to paleobiology and the fossil record, 
1st edn. Wiley-Blackwell.

Bini, L.M., Diniz-Filho, J.A.F., Rangel, T., Akre, T.S.B., Albaladejo, R.G., Albuquerque, 
F.S, et al. (2009) Coefficient shifts in geographical ecology: an empirical 
evaluation of spatial and non-spatial regression. Ecography, 32, 193-204.

Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O. Bernat, A., Blankmeyer, E., 
et al. (2010). spdep: Spatial dependence: weighting schemes, statistics and 
models. R package version 0.5-14. http://CRAN.R-project.org/package=spdep

Bokma, F., Bokma, J. & Monkkonen, M. (2001) Random processes and geographic 
species richness patterns: why so few species in the north? Ecography, 24, 43-49.

Colwell, R.K., Gotelli, N.J., Rahbek, C., Entsminger, G.L., Farrell, C. & Grave, G.R. 
(2009) Peaks, plateaus, canyons, and craters: the complex geometry of simple 
mid-domain effect models. Evolutionary Ecology Research, 11, 355-370.

Diniz-Filho, J.A., Hawkins, B.A., Bini, L.M., De Marco, P. & Blackburn, T.M. (2007) 
Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et 
al. 2007. Ecography, 30, 848-851.

Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., et al. 
(2007) Methods to account for spatial autocorrelation in the analysis of species 
distributional data: a review. Ecography, 30, 609-628.

Dunn, R.R., McCain, C.M. & Sanders, N.J. (2007) When does diversity fit null model 
predictions? Scale and range size mediate the mid-domain effect. Global Ecology 
and Biogeography, 16, 305-312.

Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guegan, J.F., et 
al. (2009) Spatial species-richness gradients across scales: a meta-analysis. 
Journal of Biogeography, 36, 132-147.

Gaston, K.J. (2003) The structure and dynamics of geographic ranges. Oxford University 
Press.

Gotelli, N.J., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Connolly, S.R., et al. 
(2009) Patterns and causes of species richness: a general simulation model for 
macroecology. Ecology Letters, 12, 873-886

Jetz, W. & Rahbek, C. (2001) Geometric constraints explain much of the species richness 
pattern in African birds. Proceedings of the National Academy of Sciences, 98, 
5661-5666.

Lane, A. & Benton, M.J. (2003) Taxonomic level as a determinant of the shape of the 
Phanerozoic marine biodiversity curve. American Naturalist, 162, 265-276.

McPherson, J.M. & Jetz, W. (2007) Type and spatial structure of distribution data and the 
perceived determinants of geographical gradients in ecology: the species richness 
of African birds. Global Ecology and Biogeography, 16, 657-667.

Peres-Neto, P.R. & Legendre, P. (2009) Estimating and controlling for spatial structure in 
the study of ecological communities. Global Ecology and Biogeography, 19, 174-
184.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & the R Core team (2009) nlme: Linear 
and Nonlinear Mixed Effects Models. R package version 3.1-96.

R Development Core Team (2008) R: A language and environment for statistical  



J. S. Tello and R. D. Stevens – Appendix S1 21

computing. R Foundation for Statistical Computing. Vienna, Austria. URL 
http://www.R-project.org.

Rangel, T., Diniz-Filho, J.A.F. & Colwell, R.K. (2007) Species richness and evolutionary 
niche dynamics: a spatial pattern-oriented simulation experiment. American 
Naturalist, 170, 602-616.

Storch, D., Davies, R.G., Zajicek, S., Orme, C.D.L., Olson, V., Thomas, G.H. et al. 
(2006) Energy, range dynamics and global species richness patterns: reconciling 
mid-domain effects and environmental determinants of avian diversity. Ecology 
Letters, 9, 1308-1320.

Wright, D.H., Currie, D.J. & Maurer, B.A. (1993) Energy supply and patterns of species 
richness on local and regional scales. In: Species diversity in ecological  
communities (ed. by R.E. Ricklefs and D. Schluter), pp. 66-74. University of 
Chicago Press.


