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ABSTRACT

Aim To characterize relationships among indices of taxonomic, phylogenetic,
functional and phenetic diversity (TPFP diversity) for Neotropical bats and
examine if dimensionality is different from null model expectations after control-
ling for sampling effects owing to underlying variation in species richness.

Location Neotropics.

Methods Bat distributions were estimated using geographic range maps. By over-
laying range maps on a gridded map of the New World, the species composition of
each cell was determined. Then, species richness and three indices each of
phylogenetic, functional and phenetic diversity were calculated. A principal com-
ponents analysis (PCA) determined the dimensionality of the entire multivariate
data set. This was followed by two additional PCAs that examined the dimension-
ality of spatial and non-spatial fractions of the original data. Spearman rank cor-
relations determined pair-wise association among indices. Correlations and
dimensionality were compared with two different null models that account for
species richness gradients.

Results Ten measures characterizing TPFP diversity exhibited much spatial struc-
ture across the New World. Pair-wise correlations between indices were typically
different from null model expectations. While patterns of multivariate covariation
were similar across spatial and non-spatial data sets, the dimensionality of biodi-
versity was low and either lower than or no different from null model expectations.

Main conclusions Most measures of biodiversity exhibit at least some level of
quantitative redundancy, and this redundancy is often higher than expected given
sampling effects owing to species richness gradients. Considerations of uniqueness
should be made when examining conceptually different dimensions of biodiversity.
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INTRODUCTION

Billions of years of environmental dynamics and biotic evolu-

tion have led to an almost unimaginably complex earth that

teems with life. Despite centuries of documenting the world’s

biota we still know little about the spatial and temporal patterns

of biodiversity and the mechanisms that generate them. Much of

this ignorance stems from unidimensional approaches that have

been used to try to understand what is in reality the multidi-

mensional phenomenon of biodiversity (Stevens et al., 2003,

2006; Stevens, 2011). For example, most research on broad-scale

patterns of biodiversity has focused only on numbers of species

(Willig et al., 2003), a metric that while conceptually simple and

intuitive ignores much of the complexity of life (Magurran &

McGill, 2011). This is particularly unfortunate because a

unidimensional approach could potentially underestimate

current threats to biodiversity or stymie conservation efforts

(Devictor et al., 2010).

Ideas about the multidimensionality of biodiversity and the

processes that generate and maintain it are longstanding (Noss,
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1990; Zak et al., 1994; Wiens, 2011). Fundamental ways to char-

acterize the dimensionality of biodiversity are well known.

Much attention has been given to taxonomic diversity, and

research on functional and phylogenetic diversity has increased

over the last few decades (Cisneros et al., 2014). Less is known

about variation in other complementary dimensions that have

been described, and that include phenetic (Findley, 1973), inter-

action (Thompson, 1996) and character diversity (Williams &

Humphries, 1996), as well as the concept of biological complex-

ity (Naeem, 2001). Moreover, even basic information such as

how fundamental dimensions are related to each other across

empirical diversity gradients remains unclear.

Currently no synthetic conceptual framework exists that inte-

grates variation across different dimensions of biodiversity. Cor-

relations among some indices exist and in a number of

situations are substantive (Devictor et al., 2010; Stevens et al.,

2013). Nonetheless, such correlations are likely to be dependent

on context, taxon and scale. Better understanding of the magni-

tude and variation in correlations and how they affect dimen-

sionality is needed. Indeed, variation in the strength of

correlation has substantive implications. For example, if vari-

ation in all indices across a number of dimensions of biodiver-

sity is highly correlated, this suggests low dimensionality that is

likely to result from one or a few mechanisms generating such

variation. In contrast, low correlations suggest numerous inde-

pendent axes of variation, and ultimately high dimensionality

that can reflect different processes controlling the spatial pat-

terns of variation of different dimensions of biodiversity. Several

recent investigations have compared spatial or temporal vari-

ation in phylogenetic and functional dimensions of biodiversity

and have found that they represent complementary perspectives

(Meynard et al., 2011; Strecker et al., 2011; Swenson, 2013).

Despite complementarity, substantive correlations exist

(Devictor et al., 2010), and this is probably true for most if not

all dimensions. One of the most important contributors to cor-

relations among dimensions is the sensitivity of most indices to

variation in number of items (i.e. species, ecological functions,

alleles) owing to sampling effects. In particular, samples with

greater species richness will express greater variability that

manifests as higher magnitudes of indices measuring different

dimensions of biodiversity. Thus, empirical diversity gradients

should produce correlations among dimensions of biodiversity

by virtue of changes in species richness alone (Naeem & Wright,

2003). Moreover, different dimensions are measured for the

same entities (species) and this creates another form of non-

independence that can reduce dimensionality.

When examining the dimensionality of biodiversity, the

initial null hypothesis should perhaps be that dimensionality is

no different from that expected given underlying variation in

species richness. Moreover, because dimensionality has no

straightforward a priori expectation, one starting point for

better understanding its variation for a particular clade, spatial

extent or ecological context is to address the question ‘what is

the expected dimensionality of biodiversity given the underlying

variation in species richness?’ In particular, if actual dimension-

ality is different from that expected based on the underlying

magnitude of species richness gradients, this suggests that more

than the mechanisms controlling spatial variation in numbers of

species will need to be understood in order to understand vari-

ation in biodiversity as a whole. More generally, significant

deviations from expectations based on underlying variation in

species richness warrant an explanation beyond that of simple

sampling effects and in the direction of more sophisticated bio-

logical explanations.

Herein we characterize the patterns of biodiversity of

noctilionoid bats distributed throughout the New World from

the perspective of taxonomic, phylogenetic, functional and

phenetic dimensions. We examine correlations among these dif-

ferent ways of estimating biodiversity and determine how

dimensional such a multivariate data set is. Finally, we conduct

null model analyses to evaluate if dimensionality is different

from what would be expected given the underlying variation in

species richness that characterizes spatial gradients of biodiver-

sity for this important New World clade.

METHODS

The chiropteran super-family Noctilionoidea (sensu stricto:

Noctilionidae + Mormoopidae + Phyllostomidae) is an ideal

group for large-scale analyses of biodiversity. This clade of bats

is of tropical affinity and has a long history of diversification in

the New World (c. 49 Myr; Bininda-Emonds et al., 2007). This

superfamily is monophyletic (Teeling et al., 2005), species rich

(Willig & Selcer, 1989; Tello & Stevens, 2010) and phenotypically

diverse (Baker et al., 2003), and a well-resolved phylogeny exists

characterizing evolutionary relationships among most extant

species (Bininda-Emonds et al., 2007).

Characterizing multiple dimensions of biodiversity

Patterns of diversity were characterized based on geographic

range map overlaps (Patterson et al., 2007, version 2) of 133

species. The continental New World was divided into

100 km × 100 km grid cells, and those species whose distribu-

tion overlapped a particular cell were included in the list of

species for that cell. Only cells occupied by two or more taxa

were considered in analyses. For each grid cell, we estimated

taxonomic diversity as well as three indices each of functional,

phylogenetic and phenetic diversity.

Taxonomic diversity

For taxonomic diversity we used number of species (taxonomic

richness). This quantity is perhaps the most fundamental aspect

of taxonomic diversity. We did not calculate indices that take

into account evenness or dominance because available range

maps provide no information on abundance of constituent

species.

Phylogenetic diversity

For phylogenetic diversity we used the topology and branch

lengths from the noctilionoid portion of the mammal supertree
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of Bininda-Emonds et al. (2007). Based on this phylogeny, we

calculated Faith’s phylogenetic diversity measure (PD; Faith,

1992), phylogenetic species variability (PSV; Helmus et al.,

2007) and phylogenetic species clustering (PSC; Helmus et al.,

2007). PD measured the collective unique branch length of taxa

within a grid cell. PSV characterizes relatedness among taxa

across the entire phylogeny; it is directly proportional to the

average pair-wise distance among species within a grid cell rela-

tive to a phylogeny (Helmus et al., 2007). In contrast, PSC meas-

ures how clustered species are at the tips of the phylogeny; it is

directly proportional to average nearest neighbour distance

among taxa relative to a phylogeny (Helmus et al., 2007). The

supertree was manipulated in R using ape (Paradis et al., 2004)

and measures of phylogenetic diversity were calculated using

picante (Kembel et al., 2010).

Functional diversity

We used the distribution of species across trophic guilds to

estimate functional diversity. We were specifically interested in

the diversity of explicit pathways whereby bats move carbon and

energy through ecosystems (e.g. frugivory, insectivory,

sanguinivory) and categorized species into six functional groups

based on diet: aerial insectivores, frugivores, gleaning

animalivores, nectarivores, piscivores or sanguinivores (Stevens

et al., 2003). Then we counted number of species per functional

group within each grid cell and determined the richness of

functional groups, the diversity of functional groups based on

Shannon’s index (Magurran & McGill, 2011) and the evenness of

functional groups based on Camargo’s index (Camargo (1993)).

Phenetic diversity

We characterized phenetic diversity based on seven morphologi-

cal measures (Stevens & Willig, 2000): forearm length, greatest

length of skull, condylobasal length, length of maxillary

toothrow, breadth of post-orbital constriction, breadth of brain-

case and breadth across upper molars. Measures were based on

the mean of at least four males and four females for most

species. We log-transformed values for each morphological

measure and then estimated three measures of phenotypic

diversity for each grid cell. Morphological volume was estimated

as the product of the ranges of all morphological variables

(Ricklefs & Travis, 1980). Morphological variability was esti-

mated by the standard deviation (STD) of the lengths of a

minimum spanning tree uniting all species in multidimensional

space (Ricklefs & Travis, 1980). The overall degree of proximity

was estimated as the average distance of a species to its nearest

morphological neighbour (Stevens & Willig, 2000).

Quantifying covariation among dimensions of
biodiversity

We used a redundancy analysis (Legendre & Legendre, 1998) to

examine the amount of variation in biodiversity indices among

grid cells that could be accounted for by species richness. In this

analysis the nine other indices of biodiversity represented the

dependent matrix and species richness represented the predictor

variable. Similar univariate analyses were conducted for each

biodiversity index using ordinary least-square regressions.

We examined the dimensionality of biodiversity from a mul-

tivariate perspective by calculating eigenvalues based on a prin-

cipal components analysis (PCA) imposed on the 10 different

indices of biodiversity. Because of nonlinear relationships

among some indices (Fig. 1), the PCA was based on a Spearman

rank correlation matrix. We used the ‘Rnd-Lambda’ stopping

rule (Peres-Neto et al., 2005) to distinguish eigenvalues that

were larger than expected by chance and thus could be consid-

ered important axes of covariation among biodiversity indices.

According to this approach, the original data matrix is permuted

within variables (each index of biodiversity). A PCA is con-

ducted and eigenvalues retained. This was repeated 1000 times

to create distributions of eigenvalues for each principal compo-

nent that would be expected if there were no relationships

among variables. If an empirical eigenvalue was larger than the

95th percentile of the distribution of randomized eigenvalues,

then that principal component was considered important. Each

important eigenvalue represents a conservative measure of an

orthogonal dimension of biodiversity.

We used the distribution of magnitudes of eigenvalues across

all principal components as an overall measure of dimensional-

ity. Multivariate data sets containing variables that are highly

correlated exhibit low dimensionality. Also, such low-

dimensionality data sets will yield a very uneven distribution of

eigenvalues whereby most variation is accounted for by the first

few derived (principal component) axes and the remainder

account for little variation. In contrast, data that are highly

dimensional will possess a number of uncorrelated variables.

Eigenvalues will be more uniform, each accounting for similar

amounts of variation. We used Camargo’s evenness index

(Camargo, 1993) to characterize evenness of eigenvalues.

Gradients underlying variation in biodiversity are inherently

spatial phenomena. Thus we decomposed gradients into spatial

and non-spatial components and evaluated the dimensionality

of these two independent data sets. We used principal coordi-

nates of neighbourhood matrices (PCNMs; Borcard &

Legendre, 2002), based on the geographic coordinates of each

grid cell, to characterize spatial relationships among sites. Then,

we conducted a series of multiple regressions whereby each

index of biodiversity represented the dependent variable and

spatial PCNMs plus geographic coordinates represented the pre-

dictor matrix. The biodiversity values for each grid cell expected

(i.e. predicted) from these regressions represented the spatially

structured fraction of the data, whereas regression residuals of

each measure represented the non-spatial (spatially unstruc-

tured) data. We then conducted PCA and determined the

dimensionality for these two data sets according to the above

methods. In total, we conducted three different PCAs: (1) ordi-

nary PCA that examined the original data, (2) spatial PCA that

examined only the spatially structured portion of the data and

(3) non-spatial PCA that examined only the non-spatially struc-

tured portion of the data.

Dimensionality of biodiversity
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We were also interested in pair-wise patterns of covariation

among biodiversity indices. For these we used a Spearman rank

correlation coefficient to assess the magnitude of association

between each pair of diversity indices; we did this for each data

set (ordinary, spatially structured, non-spatially structured)

separately.

Null models

We used two null models to generate expected values of biodi-

versity given the underlying number of species present in each

cell. In the first null model (incidence-equiprobable), we con-

strained cells to have the same species richness as the empirical

data but allowed any species to occur in them with equal prob-

ability (row sums fixed, columns equiprobable; Sim2 of Gotelli,

2000) by randomly sampling without replacement the same

number of species found in the cell from the pool of New World

Noctilionoidea. While such a null model ideally incorporates

underlying spatial gradients in species richness, it ignores dif-

ferences among species in the number of cells occupied (i.e.

geographic range size). We conducted a more conservative null

model (incidence-fixed) where both number of species per cell

and number of cells occupied by species were maintained (row

sums fixed, column sums fixed, occurrences randomly swapped;

Sim9 of Gotelli, 2000). Indeed, numerous null scenarios exist to

construct null models. Moreover in some cases, particular

results depend on particular null models (Hardy, 2008). These

two null models span the gamut from liberal (incidence-

equiprobable) to conservative (incidence-fixed) and allow us to

account for potential null model dependence.

To evaluate if the dimensionality of biodiversity was different

from null model expectations based on underlying gradients of

species richness, we compared the evenness of eigenvalues from

the empirical PCA with a distribution of 1000 similar indices

calculated on data generated from the null models described

above. If the evenness index for the empirical data did not fall

within the middle 95% of null distributions of indices, we con-

cluded that dimensionality was different from that expected

given sampling effects and the species richness gradient. To better

explore which indices contributed to any significant difference,

from the 1000 iterations of each null model we generated distri-

butions of expected pair-wise correlations between indices of

biodiversity (see Fig. S1 and S2 in Supporting Information).

Figure 1 Scatter plots characterizing bivariate relationships
among indices of biodiversity: (a) original data, (b) spatially
structured data, (c) non-spatially structured data. Key: Tr,
taxonomic richness; Fr, richness of functional groups; Fe, evenness
of functional groups; Fd, diversity of functional groups; Mv,
morphological volume; Msd mstd, standard deviation of
morphological minimum spanning tree; Mm nnd, morphological
mean nearest neighbour distance; Psc, phylogenetic species
clustering; Psv, phylogenetic species variability; Pd, phylogenetic
species diversity.
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Moreover, we evaluated if our results depended on the particular

combination of indices used to measure diversity (Fig. S3)

RESULTS

Indices of biodiversity exhibited varying magnitudes of correla-

tion (Fig. 1a) indicating redundancy across the empirical

dimensions of biodiversity. Similar patterns of covariation exist

for spatial and non-spatial data with the exception that correla-

tions are typically weak across the non-spatial data (Fig. 1b, c).

Most variation in biodiversity was spatially structured (Fig. 2).

Although it varies among indices of biodiversity, non-spatial

variation always represented a small fraction of variation

accounted for. Species richness accounted for much of the vari-

ation among grid cells for different measures of biodiversity

(Fig. 3). This was especially the case for the original data

(R2 = 0.56, P < 0.001) and the spatially structured data

(R2 = 0.57, P < 0.001). Even for the non-spatially structured

data, species richness accounted for a significant amount of the

variation in the indices of biodiversity (R2 = 0.16, P < 0.001) but

this was less so than for the other two data sets.

Only two important principal components characterized

covariation in the original and spatial data sets (i.e. two signifi-

cant PCs; Fig. 4) that accounted for approximately 82% of the

variation in biodiversity. For these two data sets, indices of bio-

diversity exhibited both strong positive and strong negative cor-

relations with the first principal component (Fig. 4a, b). Indices

positively related to numbers of species such as richness, size of

the morphological volume, Faith’s phylogenetic diversity and

phylogenetic species clustering were negatively related to the

first PC. Indices more reflective of the similarity of items such as

morphological mean nearest neighbour, standard deviation of

morphological minimum spanning tree lengths and evenness of

functional groups were positively related to the first PC. Indices

exhibited either no correlation or negative correlations with the

second PC (Fig. 4) and the diversity of functional groups exhib-

ited the highest correlation with this axis.

PCA on the non-spatial data identified four important prin-

cipal components that accounted for 74% of the variation

(Fig. 4). Relationships between original biodiversity indices and

the first two PC axes derived from this analysis were similar to

those for ordinary and spatial data. In particular the first PC axis

was strongly related to species richness, phylogenetic diversity,

morphological volume and functional richness. The second axis

reflected functional diversity, functional evenness and

phylogenetic species variability. Unlike for the original and

spatial data sets, the third and fourth principal components were

Figure 2 Decomposition of spatially structured and
unstructured variation for each biodiversity index. Key as for
Fig. 1.

Figure 3 Variation accounted for by richness for original data
(a), spatially structured data (b) and spatially unstructured data
(c). The figure indicates the proportion of variation explained for
each individual variable, as well as for the multivariate variation
in biodiversity (excluding richness). Key as for Fig. 1.

Dimensionality of biodiversity
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important too. The third axis characterized residual variation

reflecting the tradeoff between functional evenness and clump-

ing in morphological space. The fourth axis represented a dif-

ferent but related tradeoff between phylogenetic clumping and

morphological dispersion.

Based on the original data set, significant differences existed

between empirical evenness of eigenvalues and evenness calcu-

lated on eigenvalues generated from null model analyses (Fig. 5).

Empirical dimensionality was significantly less than null model

expectations. This was true for both null models. Nonetheless,

empirical dimensionality was more similar to that produced by

the incidence-fixed null model and quite different from patterns

generated from the incidence-equiprobable null model.

When variation was decomposed into spatial and non-spatial

data, dimensionality (evenness of eigenvalues) was greater for

the non-spatial data than for the spatial data and this was true

for both empirical and null model-based patterns. Moreover, for

both data sets empirical dimensionality was significantly differ-

ent from dimensionality based on the incidence-equiprobable

null model but not significantly different from dimensionality

based on the incidence-fixed model.

DISCUSSION

Spatial variation in all measured dimensions of biodiversity was

substantial for bats in the New World. Correlations among

indices and dimensions were substantive. Moreover, such corre-

lation indicates redundancy that reduces the dimensionality of

biodiversity.

Main axes of variation in biodiversity of
Noctilionoidea

Two important orthogonal derived axes of biodiversity exist for

New World noctilionoid bats. Measures characterizing spatial

Figure 4 Results of principal
components analysis (PCA) imposed on
10 indices characterizing four dimensions
of biodiversity. In the main figure the
height of each bar represents the amount
of variation accounted for by each
principal component (PC). The two
horizontal lines represent the 95%
confidence interval around the mean
proportion of variance accounted for by
each principal component when
calculated on data that are permuted by
the biodiversity index. If a particular
principal component accounts for more
the variation than that based on the
permutation (if the histogram extends
above the top line) then that principal
component accounts for more variation
than expected by chance and is
considered statistically significant. PCA
results for: (a) original data, (b) spatially
structured data and (c) non-spatially
structured data. The inset for each part
shows loadings of 10 indices of
biodiversity on principal components.
Arrows represent the magnitude and
direction of simultaneous correlations of
each index with two principal
components considered in the inset. Dots
represent the position of each grid cell in
this two-dimensional space. Key as for
Fig. 1.
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variation in volume along a particular dimension such as

phylogenetic or phenetic diversity (i.e. size of the phylogenetic

or phenetic space represented by an assemblage) were strongly

and negatively related to this first dimension for ordinary, spatial

and non-spatial PCs. In contrast, measures of dispersion were

positively related to the first PC axis for ordinary and spatial

PCs. As biodiversity increases with more and more species there

is a reduction in the equitable distribution of items, and thus

those indices that reflect variance are positively related to this

primary dimension of biodiversity.

No clear grouping of variables by dimension type (i.e. taxo-

nomic, phylogenetic, functional and phenetic diversity) emerges

on primary axes of biodiversity as defined by PCA on any of the

three data sets. When entities are even incrementally different,

increases in the number of things will be a major contributor to

variability of items. That the axis of greatest variation in biodi-

versity is related to number of entities is likely to be very general.

That different ‘dimensions’ of biodiversity, in particular taxo-

nomic, phylogenetic, functional and phenetic diversity, are not

orthogonal is not a new idea (Naeem & Wright, 2003; Helmus

et al., 2007). Nonetheless, one revelation of these analyses is that

a greater understanding of dimensionality of biodiversity will

perhaps come not from focusing on new conceptual dimensions

drawn along lines of types of biological variability, such as

taxonomic versus phylogenetic, but along even more general

lines, in particular the statistical concepts of magnitude and

distribution.

The second orthogonal derived axis of biodiversity of New

World noctilionoids is that of functional diversity, represented

for the most part by diversity of functional groups. This was true

Figure 5 Results determining significant
differences in multivariate dimensionality
between empirical and null model
generated biodiversity. Left: distribution
of eigenvalues over 1000 runs of a null
model. Light grey lines represent results
from the incidence-equiprobable model,
dark grey lines represent results from the
incidence-fixed null model, and white
circles and the black line represent results
from empirical data. Right: comparison
of empirical and null values of evenness
among eigenvalues. The vertical line
represents the empirical Camargo
evenness calculated on eigenvalues for
each of 10 principal components
characterizing the empirical data (panels
on the left). The light grey histogram
characterizes the distribution of like
evenness values generated from 1000 runs
of the equiprobable-incidence random
null model. The dark grey histogram
characterizes the distribution of like
evenness values generated from 1000 runs
of the fixed-incidence null model.
Rectangles behind each frequency
distribution represents the area in which
the central 95% of the null evenness
values lie.

Dimensionality of biodiversity
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for all three PCAs. Species are typically not uniformly distrib-

uted among ecological functions (Hooper et al., 2005), and this

non-uniformity is likely to decouple the relationship between

diversity of functional groups and species richness. Indeed,

species richness and functional diversity gradients are rarely

linearly related to each other (Naeem & Wright, 2003; Cisneros

et al., 2014). Often there are more species than ecological func-

tions, causing functional diversity to asymptotically increase

with greater species richness. As species richness increases along

a gradient, most functional groups are represented by relatively

few species and further increases in richness serve to add taxa to

pre-existing functional groups (Stevens et al., 2003). Variation in

diversity of functional groups is also likely to be less coupled to

phylogenetic and phenetic diversity than are other measures of

biodiversity. Most variation in phenetic and phylogenetic diver-

sity is related to the addition of more functional groups, not

adding to pre-existing functional groups. Form, function and

phylogeny are intimately related (Ricklefs & Travis, 1994). Thus,

an increase in number of functional groups also tends to add

phylogenetically discrete ecomorphological groups. Accord-

ingly, when a novel functional group is added to an assemblage

this corresponds to the addition of a novel morphology or clade

in a phylogeny with a substantive effect on all measures of bio-

diversity. Nonetheless, when species are added to pre-existing

ecological functions this introduces more redundancy than

novelty and serves to decouple diversity of functional groups

from other measures of biodiversity. Indeed, fewer ecological

functions than species and an unequal numbers of species per

ecological function creates an important form of variation

in biodiversity that varies orthogonally to variation in species

richness.

Non-spatial data also possessed two additional important

dimensions of biodiversity. The proportion of non-spatial vari-

ation was small (Fig. 2) and the third and fourth PC accounted

for very few of these data. One obvious possibility is that these

very small fractions of variation simply represent random noise

or sampling error (Marcus, 1990). Nonetheless, these two axes

accounted for more covariation than expected by chance and

these two derived axes were related to how morphology is trans-

lated in terms of functional and phylogenetic diversity, respec-

tively. Indeed, the major axis of variation in biodiversity in these

data overall is related to species richness, and this variation is

primarily spatial. Once this strong gradient is accounted for and

residual variation in biodiversity is examined, the importance of

other dimensions and their interactions is illuminated.

Dimensionality of biodiversity

Depending on the analysis, dimensionality was either lower or

the same as expected given correlations of indices with species

richness. In other words, most variation in biodiversity is related

to and can be well characterized by patterns of species richness.

One interesting pattern was that of significant differences

between empirically generated dimensionality and that gener-

ated by null models. The difference was significant for the ordi-

nary data set but non-significant for the spatial and non-spatial

data sets, at least for incidence-fixed scenarios. Moreover,

dimensionality was significantly less than expected for the ordi-

nary data set. Spatial and non-spatial data sets are unique addi-

tive fractions of the overall data set. For both the spatial and

non-spatial data sets the main axis of variation was related to

species richness, yet they each characterize a unique gradient

describing variation in biodiversity. The combination of spatial

and non-spatial gradients forming the original data set may

serve to magnify the redundancy in biodiversity related to vari-

ation in species richness, thereby causing dimensionality to be

lower than expected in the original data set.

Other phenomena also create redundancy and reduce

dimensionality. For example, many new measures of biodiver-

sity are often developed so as to be conceptually analogous to

taxonomic diversity (Findley, 1973; Webb, 2000; Helmus et al.,

2007), in particular to express concepts of either species rich-

ness or evenness but measuring a different biodiversity dimen-

sion such as phylogenetic or functional diversity. This leads to

measures that are sensitive to the same type of variation,

namely the number or distribution of items in a set. We agree

that variation in biodiversity cannot be encapsulated in a single

variable (Gaston, 1996). Nonetheless, operationally, by devel-

oping new measures for unique dimensions based on the same

concepts developed for taxonomic diversity, we are creating

redundancy and potentially missing out on much of the diver-

sity of life. What is needed is the development of concepts of

biodiversity that, rather than reflecting numbers of things,

reflect how biodiversity is distributed across complex dimen-

sions. For example, focusing more on the distinctiveness

(Clarke & Warwick, 2001) of species in an assemblage or even

on the degree of correlation among characters may shed more

light on variability and allow better characterization of the

dimensionality of biodiversity.

A number of biological characteristics could also contribute

to lowering the dimensionality of biodiversity. Null models that

account for numbers of sites occupied by a species created pat-

terns that were the least dimensional, with the exception of the

non-spatial data. This reduced redundancy could at least in part

be due to two aspects that are maintained in the fixed-incidence

null models. The first are differences among taxa in range size.

After numerous iterations of the equiprobable-incidence null

models, random differences among taxa in their modelled range

size disappear and range sizes of all taxa converge on the same

mean. In contrast, fixed-incidence null models maintain differ-

ences among species in terms of the number of grid cells occu-

pied. Extensive co-occurrence among widespread taxa may

enhance redundancy, thereby reducing dimensionality. Indeed,

fundamental gradients of biodiversity such as those for species

richness are driven more by spatial variation in widely distrib-

uted species than by narrowly distributed species (Lennon et al.,

2004; Vazquez & Gaston, 2005). Moreover, distributions of

widespread taxa are more related to the environmental charac-

teristics underlying such gradients than are taxa of more limited

distribution (Mora & Robertson, 2005; Tello & Stevens, 2010).

Consistent with effects of widespread taxa may be an effect of

another characteristic of the geographic range size distribution,
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the average. Taxa with larger range sizes may exhibit a lower

dimensionality of biodiversity than taxa with a smaller average

range size. Thus, reductions in dimensionality may be further

heightened for bats because of their relatively large range size

(Villalobos & Arita, 2013). Species with extensive overlapping

ranges are likely to make a smaller contribution to spatial vari-

ance than species with smaller more geographically idiosyn-

cratic distributions.

Biodiversity is created by diversification, and this process is

likely to be another important generator of variance. Nonethe-

less, some important characteristics of this process may also

reduce dimensionality of biodiversity. Since two sister taxa

inherit characteristics from a common ancestor, they them-

selves are redundant. Niche conservatism creates redundancy

across the entire phenotype, and as a result affects dimension-

ality (Wiens, 2011). Moreover, sister taxa are often geographi-

cally distributed in close proximity (Rundle & Nosil, 2005),

thereby compounding both phylogenetic and spatial non-

independence, increasing intercorrelations and reducing

dimensionality. Further contributing to this is the lack of inde-

pendent spatial distribution that is caused by environmental

gradients. Most species are distributed across many sites along

a gradient. Accordingly, species co-occur with others even

if they all exhibit different environmental optima. Recent

approaches combining phylogenies with distribution patterns

have demonstrated that while considerable variation exists in

terms of the species composition of sites along environmental

gradients, species that co-occur are often more closely related

phylogenetically than those that do not (Cavender-Bares et al.,

2004), especially at high levels of species richness (Stevens et al.,

2012). Thus, how species respond to environmental gradients,

in particular similar distributions of closely related species

caused by niche conservatism, may substantially decrease the

dimensionality of biodiversity.

Despite our findings of low dimensionality, we recognize the

importance of using multiple indices to characterize biodiver-

sity. We do not believe that phylogenetic, functional, phenotypic

and taxonomic indices are fully redundant and that biodiversity

can be characterized solely by species richness. Our results also

demonstrate some complementarity. We found that at least two

orthogonal axes are needed to describe the covariation among

the biodiversity indices we used. Moreover, 16% of the multi-

variate variation in our original data set could not be included in

the two significant principal components and represents vari-

ation that is unique to individual biodiversity indices. Discrep-

ancies in variation among multiple indices of diversity can be

very informative, allowing the development of predictions

regarding mechanisms behind the structure of local and

regional species assemblages (Davies & Buckley, 2011; Swenson,

2013). These discrepancies can also be used to highlight areas

that could be of particular interest for conservation, where the

maintenance of high numbers of species does not guarantee the

conservation of high phylogenetic, functional or phenetic diver-

sity (Devictor et al., 2010). A multivariate and multidimensional

approach to the study and conservation of biodiversity is

fundamental.

Caveats

While examination of dimensionality can provide valuable

insights, some caveats should be made explicit. First, as with

many aspects of biodiversity, dimensionality is likely to be

dependent on scale, taxon and ultimately context. While such

dependence presents a challenge to making generalizations, it is

these very differences that generate a more comprehensive

understanding of how biodiversity varies in nature. Indeed,

ecologists should embrace such dependence and make compari-

sons across many different contexts in order to better under-

stand when dimensionality should be expected to be high

or low.

A second caveat has to do with the diversity indices that are

selected to characterize dimensionality. Indeed, a plethora exists

and no study has ever examined all indices simultaneously.

Thus, to some extent inference made on dimensionality is

limited by selection of a particular subset of indices. This

problem is not new and is true of any inference gathered from

studies that do not use exactly the same indices. An insight from

these analyses is that because most indices are correlated, the

addition of more indices to analyses is likely to add unique

variation only asymptotically; there are diminishing returns

from adding diversity indices to analyses. One strength of these

analyses is that inference is made relative to species richness, and

thus provides insight into dimensionality relative to this base-

line. Adding conceptually unique dimensions (i.e. phylogenetic,

genetic, etc.) probably adds relatively more to dimensionality

than does adding indices within particular dimensions. To this

end the most meaningful analyses will come when studies share

and compare the same conceptual dimensions of biodiversity.

Lastly, our analyses only address a spatial dimension. Vari-

ation in biodiversity forms a single, spatio-temporal continuum

(Adler et al., 2005), and while two or more indices may be highly

correlated in space they may exhibit complementary relation-

ships through time, and vice versa. Future analyses should

examine similar patterns of redundancy through the temporal

dimension. Moreover, spatial and temporal comparisons may

provide insights into the exact context in which redundancy

diminishes the dimensionality of biodiversity.

Conclusions

In this paper we have presented a new method to quantitatively

assess the dimensionality of biodiversity and found that it is

surprisingly low, particularly relative to expectations based

purely on sampling effects due to species richness gradients.

Although our analyses were not exhaustive in terms of indices,

most spatial variation can be fairly well characterized by a few

axes of covariation, especially if nonlinearities are accounted for.

New concepts are needed to better characterize biodiversity, i.e.

ones that describe the variability of life over and beyond simply

reflecting number of entities in a set. Only then will greater

complexity be appreciated and will more comprehensive

conservation strategies than maximizing numbers of species be

possible.

Dimensionality of biodiversity
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