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Appendix 1 
Methods A1 
Standardization of cation measurements between the ammonium-acetate and the Mehlich-3 

extraction methods 

We measured exchangeable cations using two extractive methods for different sets of samples from 

the plot network: 1) the 1 M ammonium acetate solution method and 2) the Melhich-3 extraction 

method (Mehlich 1984). These two methods are often strongly and linearly correlated in many 

types of soils (Eckert and Watson 1996), and we used this fact to stantardize all our measurements 

into comparable values. To do so, we analized with both methods a set of 76 soil samples chosen to 

span the entire range of variation in cation concentrations in the soils of the study region.  

We then fitted linear ordinary least-square models to the relationships between values in the two 

methods, producing the following regression equations (Fig. A1): 

Calcium: CaMelhich-3 = 53.032 + 0.3588 × Caammonium acetate; R2 = 0.87, p < 0.001 

Magnesium: MgMelhich-3 = - 49.387 + 0.6635 × Mgammonium acetate; R2 = 0.78, p < 0.001 

Potassium: KMelhich-3 = 28.689 + 0.7326 × Kammonium acetate; R2 = 0.68, p < 0.001 

With these equations, we transformed all ammonium acetate values into their Mehlich-3 

equivalents. Sodium was not included in the analysis because it produced a weak and non-

significant relationship between methods (Fig. A1).  
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Figure A1. Relationships in cation concentrations between the 1 M ammonium acetate solution and 
the Melhich-3 extraction methods. 
 

 

  



Methods A2 

Construction of sub-regions with varying spatial extent 

To investigate the effects of spatial extent (i.e. size of regions, spatial scale), we constructed 200 

sub-regions based on portions of the dataset within our study region. Each sub-region was defined 

as a unique set of 60 plots, while spatial extent was measured as the area of the minimum convex 

polygon that contained all the 60 plots. The selection of plots and of sub-regions for our analyses 

was not completely random. Instead, we used an algorithm to guarantee the equitable representation 

of regions of different extents. In this way, analyses would not be dominated by small sub-regions, 

which are the easiest to construct (Fig. A2). Furthermore, our algorithm also minimized the overlap 

between sub-regions in term of the plots they contained, so that no sub-region shared more than 70% 

of its plots with any other sub-region. The final average proportion of shared plots was less than 10% 

(Fig. A2). Finally, our algorithm also produced a set of sub-regions where spatial extent and 

average elevation were not correlated (Fig. A2). This guarantees that elevation is not a confounding 

factor in our analyses of spatial extent. 

The algorithm we used can be described in the following steps: 

1. Define seven1 squared areas centered at each of the 398 plot in the dataset (i.e. 2786 initial 

areas). These areas range in size from 1 × 1 to 196 × 196 km. The size of the whole study 

region was 158 × 196 km.  

2. Eliminate any areas that do not contain at least 60 plots.  

3. Create a first set of candidate sub-regions by choosing 60 plots at random within each squared 

area. 

4. Calculate the spatial extent of candidate sub-regions as the area of the minimum convex 

polygon containing all 60 randomly selected plots. 

5. Sort candidate sub-regions by extent from small to large.  

6. Create a second set of candidate sub-regions by eliminating sub-regions with a large number 

of shared plots. For this step, each candidate sub-region is analyzed individually in increasing 

order of spatial extent. A sub-region is kept if it shares less than 70% of its plots with other 

sub-regions already selected. If it shares 70% or more, the sub-region is eliminated.  If during 

this process, the algorithm has already gone over the first 20% of the candidate sub-regions 

and has discarded less than 25% of the sub-regions evaluated, then all remaining sub-regions 

are kept and become part of the second set of candidate sub-regions. This was done to reduce 

computational time for the evaluation of large sub-regions. Large sub-regions are already 

unlikely to share many plots with other sub-regions, because of the extremely large number of 
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  Determined by applying the Sturge’s rule: 𝑘 =    𝑙𝑜𝑔!𝑛 + 1 ; thus for 𝑛 = 60, 𝑘 = 7	
  



random samples of 60 plots that can be obtained from a large pool of plots in Step 3.  

7. Group the second set of candidate sub-regions by spatial extent into 15 equal-range classes.  

8. Create a final set of sub-regions. For this, the algorithm iterates over each class of spatial 

extent extracting at random one sub-region per class. This process is repeated without 

replacement until 200 sub-regions have been selected. 

 

 

The algorithm was implemented using two functions written in R: calculateScale (a function 

that calculates the scale of a given set of points, according to a given definition of “scale”) and 

selectSubregions (the main function). 

The calculateScale function takes the following arguments: 

• subregions: a boolean matrix with one row per sample and one column per sub-region, 

indicating whether a plot belong to a sub-region or not. 

• coor: a matrix with the coordinates of the plots in the sub-regions, in decimal degrees. 

• e: the extent criterion to be employed: “mcp” for the area of the minimum convex polygon, 

“nndist” for the mean nearest neighbor distance, “spantree” for the mean distance 

between neighbors in a minimum spanning tree, “max” for the maximum distance plots, 

“mean” for the mean distance between plots. 

The function returns a numeric vector with the extent of the sub-region in km or km2 (depending on 

the extent criterion specified). 

calculateScale <- function(subregions, coor, e = c("mcp", 

"nndist", 

  "spantree", "max", "mean")) { 

 

  require(spatstat) 

  require(adehabitatHR) 

  if(length(e)>1) e <- "mcp" 

 

  scale <- numeric(ncol(subregions)) # empty vector 

  if(e == "mcp")  

    for(i in 1:ncol(subregions))  

      scale[i] <-  

        (mcp(SpatialPoints(coor[subregions[,i],]), 



unin="km", 

          unout="km2", percent=100)$area) 

 

  if(e == "nndist")  

    for(i in 1:ncol(subregions))  

      scale[i] <- mean(nndist(coor[subregions[,i],])) 

 

  if(e == "spantree")  

    for(i in 1:ncol(subregions))  

      scale[i] <- 

mean(spantree(dist(coor[subregions[,i],]))$dist) 

 

  if(e == "max")  

    for(i in 1:ncol(subregions))  

      scale[i] <- max(dist(coor[subregions[,i],])) 

 

  if(e == "mean")  

    for(i in 1:ncol(subregions))  

      scale[i] <- mean(dist(coor[subregions[,i],])) 

  

  scale <- scale*111.111 # from degrees to km 

  if(e == "mcp")  

    scale <- scale*111.111 # …or km2  

       

  return(scale) 

} 

 

The selectSubregion function takes the following arguments: 

• coor: matrix with the coordinates of the samples in decimal degrees, with “long” and 

“lat” columns. 

• extent.criterion: same as e in the calculateScale function (see above). 

• N: number of desired sub-regions. 

• minimum.n: minimum number of samples within each sub-region. 

• maximum.n: maximum number of samples within each sub-region. If not specified, it 

takes the same value as minimum.n. 



• sim.threshold: a threshold above which sub-regions are considered “too similar” to be 

included. For example, if sim.threshold=0.70, The function will drop sub-regions 

until no pair of sub-regions share more than 70% of its plots. 

• breaks: break points for the scale classes (like in a histogram). 

And it returns a list with the following components: 

• bool: a boolean matrix indicating if a plot is included or not within a sub-region. 

• scale: a vector with the extent, following the indicated criterion for extent. 

• extent.criterion: the criterion employed. 

• scale.units: the units of scale. 

• sim.threshold: the parameter employed. 

• h: an histogram object, useful to extract parameters with which visualize how the algorithm 

has selected different scales. 

 

selectSubregions <- function(coor, 

extent.criterion=c("mcp", "nndist", 

  "spantree", "max", "mean"), N=100, minimum.n=50, 

  maximum.n=minimum.n, sim.threshold=0.7, breaks=15) { 

   require(vegan) 

    

  # Starts using the Sturges' rule to perform  

  # a preliminar search of sub-regions of different sizes: 

  z <- max(max(coor[,1])-min(coor[,1]), max(coor[,2])-

min(coor[,2])) 

 length.sides <- as.list(seq(from = z/200, to = z,  

    length.out = ceiling(1 + log(nrow(coor), base=2)))) 

    

   # A first search: 

  L <- list() 

  for(i in 1:nrow(coor)) { # for each sample... 

 

    centre.x <- coor[i,1]; centre.y <- coor[i,2] 

   

    corners.coordinates <- lapply(length.sides, 

function(x)  



      c(xmin=centre.x-x/2, xmax=centre.x+x/2, 

ymin=centre.y-x/2,  

      ymax=centre.y+x/2)) 

 

    which.within <- lapply(corners.coordinates, 

function(x) 

      which(coor[, "long"]>=x["xmin"] & coor[, 

"long"]<=x["xmax"] & 

      coor[, "lat"]>=x["ymin"] & coor[, 

"lat"]<=x["ymax"])) 

   

    which.suitable <-  

      which.within[lapply(which.within, length) >= 

minimum.n] 

       

    L <- c(L, lapply(which.suitable, function(x)  

      sort(sample(x, size=sample(rep(c(minimum.n : 

min(c(maximum.n, 

      length(x)))), 2))[1])))) # randomness enters here 

  } 

    

  # Goes from a list to a boolean matrix, to eliminate 

quickly 

  # repeated combinations of plots (from indexes to 

boolean). 

  subregions <- matrix(FALSE, nrow=nrow(coor), 

ncol=length(L), 

    dimnames=list(rownames(coor), NULL)) 

 

  for(i in 1:length(L))  

    subregions[L[[i]],i] <- TRUE 

    

  ######################################################## 

  ### The following debugs the sub-regions matrix      ### 

  ### to make it meet the specified conditions         ### 

  ######################################################## 



  subregions <- unique(subregions, MARGIN=2) # removes 

duplicates 

  scale <- calculateScale(subregions, coor=coor, 

e=extent.criterion) 

    

  # 1. Removes "similar" sub-regions (above the specified 

  # Jaccard similarity threshold). This can be super-slow,  

  # so there is the option of making forward inclusion 

  # from small to large scales. 

  subregions <- subregions[,order(scale)] # sorted by 

scale 

  subregions <- apply(subregions, 2, which) # boolean to 

indexes 

    

  if(!is.list(subregions)) { # just to ensure this is a 

list 

    colnames(subregions) <- 1:ncol(subregions) 

    subregions <- split(t(subregions), 

colnames(subregions)) 

    names(subregions) <- NULL 

  } 

    

  L <- list(subregions[[1]]) 

  count <- 1 

  for(i in 1:length(subregions)) { 

    candidate <- subregions[[i]] 

    if(sum(unlist(lapply(L, function(x)  

      length(intersect(candidate, x)) /   

      length(union(candidate,x))>=sim.threshold)))==0) { 

        count = count+1 

        L[count] <- list(subregions[[i]]) 

    } 

       

    # By activating the following line of code,  

    # it saves time by increasing a little bit 

    # the probability to include not dissimilar  



    # enough sub-regions: 

    if(i>0.2*length(subregions) & count/i>0.75) break 

  } 

    

  # The following completes the rest with the remaining 

“blindly” 

  # It applies only if we choose to break the loop,  

  # and may include a few "similar" sub-regions 

  for(i in (count+1):length(subregions))  

    L[i] <- list(subregions[[i]]) 

    

  # Again returns to boolean and calculates scale: 

  subregions <- matrix(FALSE, nrow=nrow(coor), 

ncol=length(L), 

    dimnames=list(rownames(coor), NULL)) 

   

  for(i in 1:length(L))  

    subregions[L[[i]],i] <- TRUE 

   

  scale <- calculateScale(subregions, coor=coor, 

e=extent.criterion) 

    

  # 2. Selection to represent the different scales  

  # as equitably as possible: 

  h0 <- hist(scale, breaks=breaks, plot=FALSE) 

  counts <- h0$counts # observed counts 

  breaks <- h0$breaks # break points for the scale classes 

    

  # Defines the desired count for each scale class 

  desired.count <- numeric(length(counts)); i = 0 

  while(sum(desired.count) < N) { 

    i = i+1 

    desired.count <- rep(i, length(counts)) 

    desired.count[which(counts<i)] <- 

counts[which(counts<i)] 

  } 



    

  # Picks samples according to the desired count 

  chosen <- NULL 

  for(i in 1:length(desired.count)) { 

    lower = breaks[i] 

    upper = breaks[i+1] 

    if(i==1)  

      good.ones <- which(scale>=lower & scale<upper) 

    if(i!=1)  

      good.ones <- which(scale>lower & scale<=upper) 

     

    a.few.good.ones <- sample(good.ones, 

size=desired.count[i]) 

    chosen <- c(chosen, a.few.good.ones) 

   } 

   chosen <- unique(chosen) 

    

  # 3. Creates output: 

  bool <- subregions[,sample(chosen, min(length(chosen), 

N))] 

  scale <- calculateScale(bool, coor=coor, e = 

extent.criterion) 

   

  if(length(extent.criterion)> 1)  

    extent.criterion <- "mcp" 

  if(extent.criterion == "mcp")  

    scale.units = "km2" 

  if(extent.criterion == "nndist")  

    scale.units = "km" 

  if(extent.criterion == "spantree")  

    scale.units = "km" 

  if(extent.criterion == "max")  

    scale.units = "km" 

  if(extent.criterion == "mean")  

    scale.units = "km" 

 



  out = list(bool = bool, scale = scale,  

    extent.criterion = extent.criterion, scale.units = 

scale.units, 

    sim.threshold = sim.threshold, h=h0) 

   

  return(out) 

} 

 

 

 

 

Figure A2. Results of the algorithm to construct 200 sub-regions with varying spatial extent. (A) 

Flat histogram of spatial extents (all spatial scales represented similarly). (B) No relationship 

between elevation and spatial extent. Line shows the fit of a locally-weighted polynomial 

regression. (C) Low overlap (proportion of shared plots) between pairs of sub-regions. The vertical 

line indicates the similarity threshold in the algorithm of 70% overlap.  

  



Methods A3 

Heterogeneity and richness within sub-regions 

We were also interested in understanding how environmental heterogeneity and total richness 

changed across sub-regions as a function of spatial extent. To calculate environmental heterogeneity, 

we first standardized the values of all environmental predictors across all plots to a mean of zero 

and a standard deviation of one. Then, for the plots in each sub-region, we calculated the mean 

Euclidean distance in the multidimensional space defined by all climatic or soil predictors. We used 

this mean distance as our measure of environmental heterogeneity. To calculate elevational 

heterogeneity, we simply used the range in elevation among the plots within a sub-region. Finally, 

we counted the total number of species across the 60 plots in each sub-region. As expected, we 

found that climatic, soil and elevational heterogeneity increased with increasing spatial extent (Fig. 

A3). However, there was a good amount of scatter in these relationships, and even small regions 

could have large values of heterogeneity. Richness had a much tighter relationship with spatial 

extent (Fig. A3), but even small regions had large numbers of species (~400). The regions with the 

largest spatial extents could have more than 1250 species.  

 

 
Figure A3. Environmental heterogeneity and richness of sub-regions as a function of spatial extent: 

(A) climatic heterogeneity, (B) soils heterogeneity, (C) range in elevation and (D) species richness. 

Black lines shows locally-weighted polynomial regressions fitted to each relationship. 

 


